1
|
Bárcena‐González G, Hernández‐Robles A, Mayoral Á, Martinez L, Huttel Y, Galindo PL, Ponce A. Unsupervised Learning for the Segmentation of Small Crystalline Particles at the Atomic Level. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Andrei Hernández‐Robles
- Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX 78249 USA
| | - Álvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC‐Universidad de Zaragoza Zaragoza 50009 Spain
- Advanced Microscopy Laboratory (LMA) University of Zaragoza Zaragoza 50018 Spain
| | - Lidia Martinez
- Instituto de Ciencia de Materiales de Madrid (ICMM‐CSIC) Madrid 28049 Spain
| | - Yves Huttel
- Instituto de Ciencia de Materiales de Madrid (ICMM‐CSIC) Madrid 28049 Spain
| | - Pedro L. Galindo
- Department of Computer Engineering, ESI University of Cádiz Puerto Real 11510 Spain
| | - Arturo Ponce
- Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX 78249 USA
| |
Collapse
|
2
|
López-Martín R, Burgos BS, Normile PS, De Toro JA, Binns C. Gas Phase Synthesis of Multi-Element Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2803. [PMID: 34835568 PMCID: PMC8618514 DOI: 10.3390/nano11112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
The advantages of gas-phase synthesis of nanoparticles in terms of size control and flexibility in choice of materials is well known. There is increasing interest in synthesizing multi-element nanoparticles in order to optimize their performance in specific applications, and here, the flexibility of material choice is a key advantage. Mixtures of almost any solid materials can be manufactured and in the case of core-shell particles, there is independent control over core size and shell thickness. This review presents different methods of producing multi-element nanoparticles, including the use of multiple targets, alloy targets and in-line deposition methods to coat pre-formed cores. It also discusses the factors that produce alloy, core-shell or Janus morphologies and what is possible or not to synthesize. Some applications of multi-element nanoparticles in medicine will be described.
Collapse
Affiliation(s)
| | | | | | | | - Chris Binns
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla la Mancha, 13071 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
| |
Collapse
|
3
|
Sanzone G, Yin J, Cooke K, Sun H, Lievens P. Impact of the gas dynamics on the cluster flux in a magnetron cluster-source: Influence of the chamber shape and gas-inlet position. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033901. [PMID: 33820050 DOI: 10.1063/5.0028854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Although producing clusters by physical methods offers many benefits, low deposition rates have prevented cluster-beam deposition techniques from being adopted more widely. The influence of the gas aerodynamics inside the condensation chamber of a magnetron cluster-source on the cluster throughput is reported, leading to an improved understanding of the influence of gas aerodynamics on cluster transport. In the first part of this paper, the influence of the carrier gas's inlet position on the cluster flux is studied. In particular, two inlet configurations were investigated, i.e., from the rear of the chamber and from within the magnetron sputtering source. It was found experimentally that the latter configuration can lead to an increased cluster flux, under the same conditions of gas pressure and power applied to the magnetron. This behavior is explained with the help of simulations. In the second part of this paper, the gas dynamics behavior inside four chamber shapes, namely, two cylindrical shapes with different cross-sectional diameters and two conical shapes with different apex angles, was simulated. The modeling showed that the fraction of clusters successfully leaving the aggregation zone can be increased by up to eight times from the worst to the best performing chamber geometries studied. Finally, the cluster throughput was determined experimentally using a quartz microbalance in two of the four chamber designs. It was found that the cluster flux increased up to one order of magnitude, reaching ∼20 mg/h for a condensation chamber with a smaller cross section and a conical exit.
Collapse
Affiliation(s)
- Giuseppe Sanzone
- Teer Coatings Ltd., West Stone House, West Stone, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Jinlong Yin
- Teer Coatings Ltd., West Stone House, West Stone, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Kevin Cooke
- Teer Coatings Ltd., West Stone House, West Stone, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Hailin Sun
- Teer Coatings Ltd., West Stone House, West Stone, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS, United Kingdom
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
4
|
Zhao J, Mayoral A, Martínez L, Johansson MP, Djurabekova F, Huttel Y. Core-Satellite Gold Nanoparticle Complexes Grown by Inert Gas-Phase Condensation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:24441-24450. [PMID: 33193943 PMCID: PMC7662783 DOI: 10.1021/acs.jpcc.0c07346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Spontaneous growth of complexes consisted of a number of individual nanoparticles in a controlled manner, particularly in demanding environments of gas-phase synthesis, is a fascinating opportunity for numerous potential applications. Here, we report the formation of such core-satellite gold nanoparticle structures grown by magnetron sputtering inert gas condensation. Combining high-resolution scanning transmission electron microscopy and computational simulations, we reveal the adhesive and screening role of H2O molecules in formation of stable complexes consisted of one nanoparticle surrounded by smaller satellites. A single layer of H2O molecules, condensed between large and small gold nanoparticles, stabilizes positioning of nanoparticles with respect to one another during milliseconds of the synthesis time. The lack of isolated small gold nanoparticles on the substrate is explained by Brownian motion that is significantly broader for small-size particles. It is inferred that H2O as an admixture in the inert gas condensation opens up possibilities of controlling the final configuration of the different noble metal nanoparticles.
Collapse
Affiliation(s)
- Junlei Zhao
- Department
of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki, Finland
- Department
of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alvaro Mayoral
- Institute
of Nanoscience and Materials of Aragon (INMA), Spanish National Research
Council (CSIC), University of Zaragoza, 12 Calle de Pedro Cerbuna, 50009 Zaragoza, Spain
- Laboratorio
de Microscopias Avanzadas (LMA), University
of Zaragoza, 12 Calle de Pedro Cerbuna, 50009 Zaragoza, Spain
- Center
for High-Resolution Electron Microscopy (CℏEM) School of Physical
Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Lidia Martínez
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Madrid, Spain
| | - Mikael P. Johansson
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- CSC−IT
Center for Science, P.O. Box 405, FI-02101 Espoo, Finland
| | - Flyura Djurabekova
- Department
of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki, Finland
| | - Yves Huttel
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
5
|
|