1
|
Baltà-Foix R, Serrano-Adrover C, López-Cano A, Gifre-Renom L, Sanchez-Chardi A, Arís A, Garcia-Fruitós E. Lactiplantibacillus plantarum: a new example of inclusion body producing bacteria. Microb Cell Fact 2023; 22:111. [PMID: 37296442 PMCID: PMC10251561 DOI: 10.1186/s12934-023-02120-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. RESULTS To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. CONCLUSIONS These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.
Collapse
Affiliation(s)
- Ricardo Baltà-Foix
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Caterina Serrano-Adrover
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Adrià López-Cano
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Laia Gifre-Renom
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Alejandro Sanchez-Chardi
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Anna Arís
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| | - Elena Garcia-Fruitós
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| |
Collapse
|
2
|
Voltà-Durán E, Parladé E, Serna N, Villaverde A, Vazquez E, Unzueta U. Endosomal escape for cell-targeted proteins. Going out after going in. Biotechnol Adv 2023; 63:108103. [PMID: 36702197 DOI: 10.1016/j.biotechadv.2023.108103] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Protein-based nanocarriers are versatile and biocompatible drug delivery systems. They are of particular interest in nanomedicine as they can recruit multiple functions in a single modular polypeptide. Many cell-targeting peptides or protein domains can promote cell uptake when included in these nanoparticles through receptor-mediated endocytosis. In that way, targeting drugs to specific cell receptors allows a selective intracellular delivery process, avoiding potential side effects of the payload. However, once internalized, the endo-lysosomal route taken by the engulfed material usually results in full degradation, preventing their adequate subcellular localization, bioavailability and subsequent therapeutic effect. Thus, entrapment into endo-lysosomes is a main bottleneck in the efficacy of protein-drug nanomedicines. Promoting endosomal escape and preventing lysosomal degradation would make this therapeutic approach clinically plausible. In this review, we discuss the mechanisms intended to evade lysosomal degradation of proteins, with the most relevant examples and associated strategies, and the methods available to measure that effect. In addition, based on the increasing catalogue of peptide domains tailored to face this challenge as components of protein nanocarriers, we emphasize how their particular mechanisms of action can potentially alter the functionality of accompanying protein materials, especially in terms of targeting and specificity in the delivery process.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.
| |
Collapse
|
3
|
Barguilla I, Unzueta U, Carratalá JV, Cano-Garrido O, Villaverde A, Hernández A, Ferrer-Miralles N. Toxicity Profiling of Bacterial Inclusion Bodies in Human Caco-2 Cells. Front Bioeng Biotechnol 2022; 10:842256. [PMID: 35573225 PMCID: PMC9099286 DOI: 10.3389/fbioe.2022.842256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial inclusion bodies (IBs) are discrete macromolecular complexes that appear in recombinant prokaryotic cells under stress conditions. These structures are often discarded for biotechnological uses given the difficulty in recovering proteins of interest from them in a soluble form. However, recent approaches have revealed the potential of these protein clusters as biomaterials to promote cell growth and as protein depots for the release of recombinant proteins for biotechnological and biomedical applications. Although these kinds of natural supramolecular complexes have attracted great interest, no comprehensive study of their toxicity in cell cultures has been carried out. In this study, caco-2 cells were exposed to natural IBs, soluble protein-only nanoparticles (NPs), and non-assembled versions of the same protein for comparative purposes. Cytotoxicity, oxidative stress, and genotoxicity were analyzed for all these protein formats. Natural IBs and soluble protein formats demonstrated their safety in eukaryotic cells. No cytotoxicity, genotoxicity, or oxidative stress was detected in caco-2 cells exposed to the protein samples in any of the experimental conditions evaluated, which covered protein concentrations used in previous biological activity assays. These conditions evaluated the activity of protein samples obtained from three prokaryotic hosts [Escherichia coli and the endotoxin-free expression systems Lactococcus lactis and ClearColi® BL21 (DE3)]. Our results demonstrate that natural IBs and soluble protein nanoparticles are non-toxic materials for eukaryotic cells and that this may represent an interesting alternative to the classical unassembled format of recombinant proteins for certain applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Irene Barguilla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
| | - Jose Vicente Carratalá
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Olivia Cano-Garrido
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Villaverde
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Neus Ferrer-Miralles
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Sánchez JM, Carratalá JV, Gifre-Renom L, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Quality Control of Proteins Solubilized from Inclusion Bodies. Methods Mol Biol 2022; 2406:469-477. [PMID: 35089575 DOI: 10.1007/978-1-0716-1859-2_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite substantial development of production and purification protocols for heterologous recombinant proteins, some proteins are difficult to produce or, when produced, are accumulated in inclusion bodies (IBs). Nondenaturing protocols can be used to recover the entrapped protein from these protein aggregates. In this chapter, we provide a detailed procedure to analyze the physicochemical properties of one of those proteins produced in prokaryotic expression systems. Serum amyloid A3 (SAA3) was recovered from inclusion bodies (IBs) and its secondary structure associated to thermal stability and size was determined by circular dichroism (CD) and dynamic light scattering (DLS), respectively. These techniques were also applied to evaluate the SAA3 interaction with model membranes. These results show the importance of the structural analysis of proteins released from inclusion bodies under nondenaturing procedures, although similar approaches can be extended to any type of recombinant protein preparation.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba, Argentina.
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba, Argentina.
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Laia Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
5
|
Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles. Colloids Surf B Biointerfaces 2021; 208:112123. [PMID: 34571468 DOI: 10.1016/j.colsurfb.2021.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022]
Abstract
The capability of HeLa cells to internalize large spherical microparticles has been evaluated by using inorganic, magnetic microparticles of 1 and 2.8 µm of diameter. In both absence but especially under the action of a magnet, both types of particles were uptaken, in absence of cytotoxicity, by a significant percentage of cells, in a non-endosomal process clearly favored by the magnetic field. The engulfed particles efficiently drive inside the cells chemically associated proteins such as GFP and human alpha-galactosidase A, without any apparent loss of protein functionalities. While 1 µm particles are completely engulfed, at least a fraction of 2.8 µm particles remain embedded into the cell membrane, with only a fraction of their surface in cytoplasmic contact. The detected tolerance to endosomal-independent cell penetration of microscale objects is not then restricted to organic, soft materials (such as bacterial inclusion bodies) as previously described, but it is a more general phenomenon also applicable to inorganic materials. In this scenario, the use of magnetic particles in combination with external magnetic fields can represent a significant improvement in the internalization efficiency of such agents optimized as drug carriers. This fact offers a wide potential in the design and engineering of novel particulate vehicles for therapeutic, diagnostic and theragnostic applications.
Collapse
|
6
|
Voltà-Durán E, Serna N, Sánchez-García L, Aviñó A, Sánchez JM, López-Laguna H, Cano-Garrido O, Casanova I, Mangues R, Eritja R, Vázquez E, Villaverde A, Unzueta U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater 2021; 119:312-322. [PMID: 33189955 DOI: 10.1016/j.actbio.2020.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
The possibility to conjugate tumor-targeted cytotoxic nanoparticles and conventional antitumoral drugs in single pharmacological entities would open a wide spectrum of opportunities in nanomedical oncology. This principle has been explored here by using CXCR4-targeted self-assembling protein nanoparticles based on two potent microbial toxins, the exotoxin A from Pseudomonas aeruginosa and the diphtheria toxin from Corynebacterium diphtheriae, to which oligo-floxuridine and monomethyl auristatin E respectively have been chemically coupled. The resulting multifunctional hybrid nanoconjugates, with a hydrodynamic size of around 50 nm, are stable and internalize target cells with a biological impact. Although the chemical conjugation minimizes the cytotoxic activity of the protein partner in the complexes, the concept of drug combination proposed here is fully feasible and highly promising when considering multiple drug treatments aimed to higher effectiveness or when facing the therapy of cancers with acquired resistance to classical drugs.
Collapse
|
7
|
Serna N, Carratalá JV, Parladé E, Sánchez-Chardi A, Aviñó A, Unzueta U, Mangues R, Eritja R, Ferrer-Miralles N, Vazquez E, Villaverde A. Developing Protein-Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57746-57756. [PMID: 33325705 DOI: 10.1021/acsami.0c18317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel concept about bifunctional antimicrobial drugs, based on self-assembling protein nanoparticles, has been evaluated here over two biofilm-forming pathogens, namely Pseudomonas aeruginosa and Staphylococcus aureus. Two structurally different antimicrobial peptides (GWH1 and PaDBS1R1) were engineered to form regular nanoparticles of around 35 nm, to which the small molecular weight drug Floxuridine was covalently conjugated. Both the assembled peptides and the chemical, a conventional cytotoxic drug used in oncotherapy, showed potent antimicrobial activities that were enhanced by the combination of both molecules in single pharmacological entities. Therefore, the resulting prototypes show promises as innovative nanomedicines, being potential alternatives to conventional antibiotics. The biological performance and easy fabrication of these materials fully support the design of protein-based hybrid constructs for combined molecular therapies, expected to have broad applicability beyond antimicrobial medicines. In addition, the approach taken here validates the functional exploration and repurposing of antitumoral drugs, which at low concentrations perform well as unexpected biofilm-inhibiting agents.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
8
|
Pisani A, Donno R, Gennari A, Cibecchini G, Catalano F, Marotta R, Pompa PP, Tirelli N, Bardi G. CXCL12-PLGA/Pluronic Nanoparticle Internalization Abrogates CXCR4-Mediated Cell Migration. NANOMATERIALS 2020; 10:nano10112304. [PMID: 33233846 PMCID: PMC7699919 DOI: 10.3390/nano10112304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Chemokine-induced chemotaxis mediates physiological and pathological immune cell trafficking, as well as several processes involving cell migration. Among them, the role of CXCL12/CXCR4 signaling in cancer and metastasis is well known, and CXCR4 has been often targeted with small molecule-antagonists or short CXCL12-derived peptides to limit the pathological processes of cell migration and invasion. To reduce CXCR4-mediated chemotaxis, we adopted a different approach. We manufactured poly(lactic acid-co-glycolic acid) (PLGA)/Pluronic F127 nanoparticles through microfluidics-assisted nanoprecipitation and functionalized them with streptavidin to docking a biotinylated CXCL12 to be exposed on the nanoparticle surface. Our results show that CXCL12-decorated nanoparticles are non-toxic and do not induce inflammatory cytokine release in THP-1 monocytes cultured in fetal bovine and human serum-supplemented media. The cell internalization of our chemokine receptor-targeting particles increases in accordance with CXCR4 expression in FBS/medium. We demonstrated that CXCL12-decorated nanoparticles do not induce cell migration on their own, but their pre-incubation with THP-1 significantly decreases CXCR4+-cell migration, thereby antagonizing the chemotactic action of CXCL12. The use of biodegradable and immune-compatible chemokine-mimetic nanoparticles to reduce cell migration opens the way to novel antagonists with potential application in cancer treatments and inflammation.
Collapse
Affiliation(s)
- Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (A.P.); (G.C.); (P.P.P.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (R.D.); (A.G.)
| | - Arianna Gennari
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (R.D.); (A.G.)
| | - Giulia Cibecchini
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (A.P.); (G.C.); (P.P.P.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Federico Catalano
- Electron Microscopy Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.C.); (R.M.)
| | - Roberto Marotta
- Electron Microscopy Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.C.); (R.M.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (A.P.); (G.C.); (P.P.P.)
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (R.D.); (A.G.)
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (N.T.); (G.B.); Tel.: +39-010-289-6923 (N.T.); +39-010-289-6519 (G.B.)
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (A.P.); (G.C.); (P.P.P.)
- Correspondence: (N.T.); (G.B.); Tel.: +39-010-289-6923 (N.T.); +39-010-289-6519 (G.B.)
| |
Collapse
|
9
|
Carratalá JV, Serna N, Villaverde A, Vázquez E, Ferrer-Miralles N. Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnol Adv 2020; 44:107603. [PMID: 32738381 DOI: 10.1016/j.biotechadv.2020.107603] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Peptide drugs hold great potential for the treatment of infectious diseases due to their unconventional mechanisms of action, biocompatibility, biodegradability and ease of synthesis and modification. The increasing rising of bacterial strains resistant to classical antibiotics have pushed the development of new peptide-based antimicrobial therapies. In this context, over the past few years, different approaches have reached a clinical approval. Furthermore, the application of nanotechnological principles to the design of antimicrobial peptide-based composites increases even more the already known benefits of antimicrobial peptides as competent protein drugs. Then, we provide here an overview of the current strategies for antimicrobial peptide discovery and modification and the status of such peptides already under clinical development. In addition, we summarize the innovative formulation strategies for their application, focusing on the controlled self-assembly for the fabrication of antimicrobial nanostructures without the assistance of external nanocarriers, and with emphasis on bioengineering, design of ultra-short peptides and rising insights in bacterial selectivity.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
10
|
Sala R, Sánchez-García L, Serna N, Céspedes MV, Casanova I, Roldán M, Sánchez-Chardi A, Unzueta U, Vázquez E, Mangues R, Villaverde A. Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4 + colorectal cancer. Acta Biomater 2019; 99:426-432. [PMID: 31494293 DOI: 10.1016/j.actbio.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
By the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4+ cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4+ colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4+ tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material. Such specificity is combined with improved endosomal escape, what overall results in a precise and highly efficient tumor biodistribution. These data strongly support the functional recruitment as a convenient approach to generate protein materials for clinical applications. More precisely, they also support the unexpected concept that enhancing the unspecific membrane activity of a protein material does not necessarily compromise, but it can even improve, the selective cell targeting offered by an accompanying functional module. STATEMENT OF SIGNIFICANCE: We have shown here that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies.
Collapse
Affiliation(s)
- Rita Sala
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal, Servei d'Anatomia Patològica, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|