1
|
Han SB, Kim HS, Jo YJ, Lee SS. Fluorescence Immunoassay of Prostate-Specific Antigen Using 3D Paddle Screw-Type Devices and Their Rotating System. BIOSENSORS 2024; 14:494. [PMID: 39451707 PMCID: PMC11506760 DOI: 10.3390/bios14100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In this paper, we present a sensitive and highly reproducible fluorescence immunosensor for detecting PSA in human serum. A unique feature of this study is that it uses creatively designed paddle screw-type devices and their custom-made rotating system for PSA immunoassay. The paddle screw devices were designed to maximize the surface-to-volume ratio over which the immunoassay reaction could occur to improve detection sensitivity. This paddle screw-based immunoassay offers an accessible and efficient method with a short analysis time of less than 30 min. Active rotation of the paddle screw plays a crucial role in fast and accurate analysis of PSA. Additionally, a paddle screw-based immunoassay and subsequent fluorescence detection using a custom prototype fluorescence detection system were compared to a typical well plate-based immunoassay system. Results of PSA detection in human serum showed that the detection sensitivity through the paddle screw-based analysis improved about five times compared to that with a well plate-based analysis.
Collapse
Affiliation(s)
| | | | | | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea; (S.B.H.); (H.S.K.); (Y.J.J.)
| |
Collapse
|
2
|
Skládal P. Piezoelectric biosensors: shedding light on principles and applications. Mikrochim Acta 2024; 191:184. [PMID: 38451295 PMCID: PMC10920441 DOI: 10.1007/s00604-024-06257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
The three decades of experience with piezoelectric devices applied in the field of bioanalytical chemistry are shared. After introduction to principles and suitable measuring approaches, active and passive methods based on oscillators and impedance analysis, respectively, the focus is directed towards biosensing approaches. Immunosensing examples are provided, followed by other affinity sensing approaches based on hybridization of nucleic acids, aptamers, monitoring of enzyme activities, and detection of pathogenic microbes. The combination of piezosensors with cell lines and testing of drugs is highlighted, including mechanically active cells. The combination of piezosensors with other measuring techniques providing original hybrid devices is briefly discussed.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
Mehta D, Gupta D, Kafle A, Kaur S, Nagaiah TC. Advances and Challenges in Nanomaterial-Based Electrochemical Immunosensors for Small Cell Lung Cancer Biomarker Neuron-Specific Enolase. ACS OMEGA 2024; 9:33-51. [PMID: 38222505 PMCID: PMC10785636 DOI: 10.1021/acsomega.3c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Early and rapid detection of neuron-specific enolase (NSE) is highly significant, as it is putative biomarker for small-cell lung cancer as well as COVID-19. Electrochemical techniques have attracted substantial attention for the early detection of cancer biomarkers due to the important properties of simplicity, high sensitivity, specificity, low cost, and point-of-care detection. This work reviews the clinically relevant labeled and label-free electrochemical immunosensors developed so far for the analysis of NSE. The prevailing role of nanostructured materials as electrode matrices is thoroughly discussed. Subsequently, the key performances of various immunoassays are critically evaluated in terms of limit of detection, linear ranges, and incubation time for clinical translation. Electrochemical techniques coupled with screen-printed electrodes developing market level commercialization of NSE sensors is also discussed. Finally, the review concludes with the current challenges associated with available methods and provides a future outlook toward commercialization opportunities for easy detection of NSE.
Collapse
Affiliation(s)
- Daisy Mehta
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Divyani Gupta
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Alankar Kafle
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sukhjot Kaur
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Tharamani C. Nagaiah
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Chen D, Wen Y, Li P, Wang Y, Dong T. Magnetically Modulated Differential Quartz Crystal Microbalances for Rapid, Ultrasensitive, and Direct Probing of Prostate-Specific Antigens Conjugated with Magnetic Beads. ACS Sens 2023; 8:4031-4041. [PMID: 37943682 DOI: 10.1021/acssensors.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The occurrence and development of diseases are closely related to overexpression of specific biomarkers in the serum of patients. Rapid and sensitive biomarker detection is beneficial for early diagnosis and treatment. However, the current laboratory processes and assays for biomarker detection are expensive and time-consuming, and their operation also requires a large number of professionals. We developed a magnetically modulated differential quartz crystal microbalance (MMD-QCM) method combined with magnetic bead (MB) labels for rapid and highly sensitive quantitative detection of prostate-specific antigen (PSA). Because MBs exhibit magnetized rotation motion under an applied AC magnetic field, a pair of QCMs are utilized to measure the difference between the magnetic motion intensities of the MBs and the MB-PSA immune complex to determine the PSA concentration. Experimental results demonstrate that the proposed method can be adopted to determine the PSA concentration in a wide range of 0.01-1000 ng/mL as well as exhibit a low detection limit of 0.065 ng/mL. In addition, the proposed scheme enables fast detection and low sample consumption. The single detection process takes less than 4 h and requires only 113 μL of sample solution. The proposed detection strategy is superior to the existing detection method and can be effectively used in early screening and prognostic diagnosis of cancer and other related diseases owing to its simplicity, low cost, and high speed.
Collapse
Affiliation(s)
- Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yao Wang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Tao Dong
- Department of Microsystems, Norwegian Centre of Expertise on Micro-Nanotechnology, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, 3603 Kongsberg, Norway
| |
Collapse
|
5
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Sarkar S, Gogoi M, Mahato M, Joshi AB, Baruah AJ, Kodgire P, Boruah P. Biosensors for detection of prostate cancer: a review. Biomed Microdevices 2022; 24:32. [PMID: 36169742 DOI: 10.1007/s10544-022-00631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Abhijeet Balwantrao Joshi
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Arup Jyoti Baruah
- Department of General Surgery, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Prashant Kodgire
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Polina Boruah
- Department of Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong-793018, Meghalaya, India
| |
Collapse
|
8
|
Turan E, Zengin A, Suludere Z, Kalkan NÖ, Tamer U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta 2022; 237:122926. [PMID: 34736663 DOI: 10.1016/j.talanta.2021.122926] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 11/18/2022]
Abstract
Selective and sensitive detection of cancer biomarkers in serum samples is critical for early diagnosis of cancer. Prostate specific antigen is an important biomarker of prostate cancer, which ranks high among cancer-related deaths of men over 50 years old. Herein, a novel analytical method was introduced for detection of PSA by combining high selectivity of molecularly-imprinted polymers and high sensitivity of surface-enhanced Raman spectroscopy (SERS). Firstly, magnetic nanoparticles were grafted with an imprinted layer by using tannic acid as a functional monomer, diethylenetriamine as a cross-linker and prostate specific antigen as a template molecule. Detailed surface characterization and re-binding experiment results indicated that the imprinting of the antigen was successful with an imprinting factor of 5.58. The prepared magnetic molecularly imprinted polymers (MMIPs) were used as an antibody-free capture probe and labeled with gold nanoparticles that were modified with anti-PSA and a Raman reporter, namely 5,5'-dithiobis-(2-nitrobenzoic acid). Thus, a plasmonic structure (sandwich complex) was formed between MMIP and the SERS label. The limit of detection and limit of quantification of the designed sensor were 0.9 pg/mL and 3.2 pg/mL, respectively. The sensor also showed high recovery rates (98.0-100.1% for healthy person and 99.0-101.3% for patient) with low standard deviations (less than 4.3% for healthy person and less than 3.3% for patient) for PSA in serum samples. Compared with the traditional immunoassays, the proposed method has several advantages like low cost, reduced detection procedure, fast response, high sensitivity and selectivity. It is believed that the proposed method can be potentially used for selective and sensitive determination of tumor marker of prostate cancer in clinical applications.
Collapse
Affiliation(s)
- Eylem Turan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, 06050, Ankara, Turkey
| | - Adem Zengin
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Nurhan Önal Kalkan
- Department of Medical Oncology, Faculty of Medicine, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06500, Ankara, Turkey
| |
Collapse
|
9
|
Yue N, Li D, Fan A. A Simple Colorimetric Analytical Assay for the Determination of Tetracyclines Based on In-situ Generation of Gold Nanoparticles Coupling with a Gold Staining Technique. ANAL SCI 2021; 37:1583-1587. [PMID: 33994417 DOI: 10.2116/analsci.21p115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of simple and sensitive detection methods for tetracyclines (TCs) is crucial for their routine detection. The present study developed a colorimetric method for the detection of TCs based on the in-situ generation of AuNPs, which were subsequently coupled with a gold staining reaction. Briefly, TCs containing phenolic groups reduce HAuCl4 to form gold nanoparticles (AuNPs) as gold seeds. In the gold staining process, the gold seeds catalyze the reduction of HAuCl4 by NH2OH to form gold atoms that deposit on the surface of AuNPs, resulting in the enlargement of AuNPs. Sensitive detection of TCs was achieved by employing the gold staining technique. As low as 14, 18.9, and 1.98 nM of oxytetracycline (OTC), tetracycline (TC), and doxycycline (DC), respectively, could be sensitively detected. The proposed method also exhibited good repeatability and specificity, and then was applied to the determination of OTC in milk samples.
Collapse
Affiliation(s)
- Ningning Yue
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University
| | - Dongmei Li
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University
| |
Collapse
|
10
|
Shinko EI, Farafonova OV, Shanin IA, Eremin SA, Ermolaeva TN. Determination of the Fluoroquinolones Levofloxacin and Ciprofloxacin by a Piezoelectric Immunosensor Modified with Multiwalled Carbon Nanotubes (MWCNTs). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1991364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Evgenia I. Shinko
- Department of Chemistry, Lipetsk State Technical University, Lipetsk, Russia
| | - Olga V. Farafonova
- Department of Chemistry, Lipetsk State Technical University, Lipetsk, Russia
| | - Il'ja A. Shanin
- Department of chemical enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A. Eremin
- Department of chemical enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
11
|
Mehdipour G, Shabani Shayeh J, Omidi M, Pour Madadi M, Yazdian F, Tayebi L. An electrochemical aptasensor for detection of prostate-specific antigen using reduced graphene gold nanocomposite and Cu/carbon quantum dots. Biotechnol Appl Biochem 2021; 69:2102-2111. [PMID: 34632622 DOI: 10.1002/bab.2271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023]
Abstract
We report a label-free electrochemical aptamer-based biosensor for the detection of human prostate-specific antigen (PSA). The thiolate DNA aptamer against PSA was conjugated to the reduced graphene oxide/Au (RGO-Au) nanocomposite through the self-assembly of Au-S groups. Owing to the large volume to surface ratio, the RGO-Au nanocomposite provides a large surface for aptamer loading. The RGO-Au/aptamer was combined with a Nafion polymer and immobilized on a glassy carbon electrode. The interaction of aptamer with PSA was studied by cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The detection of limit for prepared electrode was obtained about 50 pg/mL at the potential of 0.4 V in potassium hexacyanoferrate [K4 Fe(CN)6 ] medium. To decrease the limit of detection (LOD) and applied potential of the prepared nanoprobe Cu/carbon quantum dots (CuCQD) is introduced as a new redox. The results show that this new electrochemical medium provides better conditions for the detection of PSA. LOD of a nanoprobe in CuCQD media was obtained as 40 pg/mL at the potential of -0.2 V. Under optimal conditions, the aptasensor exhibits a linear response to PSA with a LOD as small as 3 pg/mL. The present aptasensor is highly selective and sensitive and shows satisfactory stability and repeatability.
Collapse
Affiliation(s)
- Golnaz Mehdipour
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Omidi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Gao R, Liu B, Luo D, Su Y, Su L. Enhanced Immunosensor Using a Handheld pH Meter for the Point‐of‐Care, Sensitive Detection of Prostate Specific Antigen. ELECTROANAL 2021. [DOI: 10.1002/elan.202100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rong Gao
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Bingqian Liu
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Dajuan Luo
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Yonghuan Su
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Lixia Su
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| |
Collapse
|
13
|
Lim JY, Lee SS. Quartz crystal microbalance cardiac Troponin I immunosensors employing signal amplification with TiO 2 nanoparticle photocatalyst. Talanta 2021; 228:122233. [PMID: 33773737 DOI: 10.1016/j.talanta.2021.122233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
A sensitive and highly reproducible cardiac troponin I (cTnI) immunoassay in human serum is a challenging research goal for researchers studying biosensors because cTnI can undergo proteolysis and various modifications in blood. Furthermore, the reproducible detection of cTnI at very low concentrations is also required for diagnosing acute myocardial infarction. Here, we present sensitive and highly reproducible quartz crystal microbalance (QCM) immunosensors for the detection of cTnI in human serum. The unique features of this study are the use of a pair of capture antibodies that bind to different epitopes of cTnI, and the use of a signal amplification technique that enlarged the size of the titanium dioxide nanoparticles using photocatalytic silver staining. Since QCM measures changes in the resonance frequency due to the changes in mass occurring on the sensor surface, it is possible to quantitatively analyze cTnI based on the enormous increase in mass using a sandwich immunoassay and subsequent signal amplification by silver staining. The detection limit of the cTnI immunoassay in human serum without photocatalytic silver staining was 307 pg/ml, but 18 pg/ml in photocatalytic silver staining-mediated signal amplification. Thus, amplifying the signal increased the sensitivity and reproducibility of the cTnI immunoassay in human serum.
Collapse
Affiliation(s)
- Ji Yoon Lim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Soo Suk Lee
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea; Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
14
|
Lim JY, Lee SS. Sensitive detection of microRNA using QCM biosensors: sandwich hybridization and signal amplification by TiO 2 nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5103-5109. [PMID: 33052368 DOI: 10.1039/d0ay01481h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MicroRNA-21 (miR-21) is known to act as an important biomarker for cancer, in that its up-regulation is closely related to several types of malignant tumor. Sensitive and accurate detection of miR-21 using a biosensor is highly challenging. In this study, sensitive and selective detection technology for miR-21 molecules using a quartz crystal microbalance (QCM) biosensor was developed. Sandwich hybridization between miR-21 and specially designed probes and a subsequent TiO2 photocatalytic silver enhancement reaction were the driving forces for sensitive detection with high selectivity for miR-21. Using this strategic approach under optimal conditions, the novel QCM biosensor can detect miR-21 with a LOD of 0.87 pM over the entire linear range from 0.1 pM to 10 μM, with a correlation coefficient of 0.988. In addition, the developed QCM biosensor was very effective in the quantification of miR-21 in serum samples, so the proposed miRNA detection method offers great potential for the diagnosis of early disease, such as cancer and vascular diseases, and could be an excellent alternative for biological research and clinical diagnosis.
Collapse
Affiliation(s)
- Ji Yoon Lim
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-Si, 31538, Republic of Korea.
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-Si, 31538, Republic of Korea.
| |
Collapse
|
15
|
Enzyme-induced Fenton reaction coupling oxidation of o-phenylenediamine for sensitive and specific immunoassay. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04499-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E209. [PMID: 31991797 PMCID: PMC7074850 DOI: 10.3390/nano10020209] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longhua Xu
- School of Food Science and Engineering, Shandong Agricultural University, Shandong 271018, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|