1
|
García-Santos L, Fernández-Catalá J, Berenguer-Murcia Á, Cazorla-Amorós D. Exploring Pt-Impregnated CdS/TiO 2 Heterostructures for CO 2 Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1809. [PMID: 39591050 PMCID: PMC11597567 DOI: 10.3390/nano14221809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This work focuses on the production of methane through the photocatalytic reduction of carbon dioxide using Pt-doped CdS/TiO2 heterostructures. The photocatalysts were prepared using P25 commercial titania and CdS synthesized through a solvothermal methodology, followed by the impregnation of Pt onto the surface to enhance the physicochemical properties of the resulting photocatalysts. The pure and heterostructure-based materials were characterized using X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). The obtained results show the successful synthesis of the heterostructure impregnated with Pt. Moreover, the observed key role of CdS and Pt nanoparticles in the final semiconductor is to reduce the electron-hole pair recombination rate by acting as an electron sink, which slows down the recombination process and increases the photocatalyst efficiency. Thus, Pt-doped CdS/TiO2 heterostructures with the best observed composition presents better catalytic activity than P25 titania with methane production values being 460 and 397 µmol CH4/g·h, respectively.
Collapse
Affiliation(s)
| | | | - Ángel Berenguer-Murcia
- Inorganic Chemistry Department, Materials Science Institute, University of Alicante, Ap. 99, 03080 Alicante, Spain; (L.G.-S.); (J.F.-C.); (D.C.-A.)
| | | |
Collapse
|
2
|
Liu G, Mamat M, Baikeli Y, Dong X. Photocatalytic degradation of methylene blue by TiO 2/Nd 2O 3 composite thin films. Heliyon 2024; 10:e29894. [PMID: 38707437 PMCID: PMC11066648 DOI: 10.1016/j.heliyon.2024.e29894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
To improve the photocatalytic property of TiO2 thin films, the composite thin films of TiO2/Nd2O3 structure were fabricated by electron-beam physical vapor deposition method, and the photocatalytic property of the fabricated films was experimentally studied in the present work. The XRD and Raman analyses show that the TiO2/Nd2O3 films are mainly hexagonal crystalline phase of Nd2O3. The XPS analysis for the chemical state changes of Ti, O and Nd of the basic elements in the films is confirming the electron flow in the internal electric field which generated in the TiO2/Nd2O3 films. The surface morphology shows the lattice distortion which affects the changes in the energy band structure. Moreover, the formation of n-n homojunctions improved the separation efficiency of electrons and holes, and enhanced the catalytic activity. The photocatalytic performance for the methylene blue target dye shows that the sample with TiO2 thickness of 20-25 nm has better performance, high degradation efficiency and high reaction rate.
Collapse
Affiliation(s)
- Guodong Liu
- School of Physics and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Mamatrishat Mamat
- School of Physics and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Yiliyasi Baikeli
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, PR China
| | - Xiaoshuo Dong
- School of Physics and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| |
Collapse
|
3
|
Zhu Z, Guo F, Li A, Xu W, Zhang X. Simple synthesis of BiOI/ZnO/rGO for efficient photocatalytic degradation of antibiotic chloramphenicol under visible light. J Environ Sci (China) 2023; 134:65-76. [PMID: 37673534 DOI: 10.1016/j.jes.2022.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 09/08/2023]
Abstract
BiOI/ZnO/rGO (reduced graphene oxide) composite photocatalyst was fabricated using a simple one-step hydrothermal process and applied to the degradation of antibiotic chloramphenicol (CAP). By tuning the Bi/Zn ratios, the structure and photoelectric properties of the catalyst were investigated and characterized in terms of their morphological, structural, optical and photoelectrochemical properties. The as-synthesized composite photocatalysts are well-crystalline, uniform dispersion and exhibit good photocatalytic properties. The photocatalytic degradation rate of CAP by BiOI/ZnO/rGO composite is 8.1 times and 1.8 times that of BiOI and ZnO, respectively. The photocatalytic mechanism studies revealed that the synergistic effect between rGO and BiOI/ZnO can effectively separate photogenerated electron-hole, enhance photocurrents and conductivity, and improve charge carrier densities. Moreover, BiOI/ZnO/rGO possesses good stability and reusability that the degradation efficiency remained above 80% even after 5 recycling. This study reveals that both the introduction of rGO and heterostructure construction between BiOI and ZnO play a crucial role in their photoelectrochemical and photocatalytic properties.
Collapse
Affiliation(s)
- Zihan Zhu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Feng Guo
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Anming Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Weichao Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xuehan Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
4
|
Wang J, Wang Y, Feng G, Zeng Z, Ma T. Photoelectric performance of InSe vdW semi-floating gate p-n junction transistor. NANOTECHNOLOGY 2023; 34:505204. [PMID: 37683623 DOI: 10.1088/1361-6528/acf7cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Semi-floating gate transistors based on vdW materials are often used in memory and programmable logic applications. In this paper, we propose a semi-floating gate photoelectric p-n junction transistor structure which is stacked by InSe/h-BN/Gr. By modulating gate voltage, InSe can be presented as N-type and P-type respectively on different substrates, and then combined into p-n junction. Moreover, InSe/h-BN/Gr device can be switched freely between N-type resistance and p-n junction. The resistance value of InSe resistor and the photoelectric properties of the p-n junction are also sensitively modulated by laser. Under dark conditions, the rectification ratio of p-n junction can be as high as 107. After laser modulation, the device has a response up to 1.154 × 104A W-1, a detection rate up to 5.238 × 1012Jones, an external quantum efficiency of 5.435 × 106%, and a noise equivalent power as low as 1.262 × 10-16W/Hz1/2. It lays a foundation for the development of high sensitivity and fast response rate tunable photoelectric p-n junction transistor.
Collapse
Affiliation(s)
- Jinghui Wang
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Yipeng Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310013, People's Republic of China
| | - Guojin Feng
- Division of Optical Metrology, National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Zhongming Zeng
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tieying Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310013, People's Republic of China
| |
Collapse
|
5
|
Zhao J, Xiong Z, Zhao Y, Chen X, Zhang J. Two-dimensional heterostructures for photocatalytic CO 2 reduction. ENVIRONMENTAL RESEARCH 2023; 216:114699. [PMID: 36351474 DOI: 10.1016/j.envres.2022.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The photocatalysis conversion of CO2 into fuels has become an encouraging method to address climate and energy issues as a long-term solution. Single material suffers poor yield due to low light energy utilization and high recombination rate of photoinduced electron-hole pairs. It is an efficient approach to construct heterojunction through two or three materials to improve the photocatalytic performance. Recently, 2D-based heterojunction is getting popular for outstanding properties, such as special light collecting structure to enhance light harvest, intimate interface to facilitate charge transfer and separation, and large specific surface area to provide abundant reactive sites. Recently, some new 2D-based heterostructures materials (both structure and composition) have been developed with excellent performance. 2D materials exert structural and functional advantages in these fine composite photocatalysts. In this review, the literatures about the photocatalytic conversion of CO2 are mainly summarized based on overall structure, interface type and material type of 2D-based heterojunction, with special attention given to the preparation, characterization, structural advantages and reaction mechanism of novel 2D-based heterojunction. This work is in hope of offering a basis for designing improved composite photocatalyst for CO2 photoreduction.
Collapse
Affiliation(s)
- Jiangting Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yongchun Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, United States.
| | - Junying Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Enhanced photocatalytic activity for degradation of ofloxacin and dye by hierarchical flower-like ZnS/MoS2/Bi2WO6 heterojunction: Synergetic effect of 2D/2D coupling interface and solid sulfide solutions. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Yang C, Wang H, Yang J, Yao H, He T, Bai J, Guang T, Cheng H, Yan J, Qu L. A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205249. [PMID: 36007144 DOI: 10.1002/adma.202205249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous multimodal monitoring can greatly perceive intricately multiple stimuli, which is important for the understanding and development of a future human-machine fusion world. However, the integrated multisensor networks with cumbersome structure, huge power consumption, and complex preparation process have heavily restricted practical applications. Herein, a graphene oxide single-component multimodal sensor (GO-MS) is developed, which enables simultaneous monitoring of multiple environmental stimuli by a single unit with unique moist-electric self-power supply. This GO-MS can generate a sustainable moist-electric potential by spontaneously adsorbing water molecules in air, which has a characteristic response behavior when exposed to different stimuli. As a result, the simultaneous monitoring and decoupling of the changes of temperature, humidity, pressure, and light intensity are achieved by this single GO-MS with machine-learning (ML) assistance. Of practical importance, a moist-electric-powered human-machine interaction wristband based on GO-MS is constructed to monitor pulse signals, body temperature, and sweating in a multidimensional manner, as well as gestures and sign language commanding communication. This ML-empowered moist-electric GO-MS provides a new platform for the development of self-powered single-component multimodal sensors, showing great potential for applications in the fields of health detection, artificial electronic skin, and the Internet-of-Things.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiawei Yang
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiaxin Bai
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianlei Guang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianfeng Yan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Zhang W, Xu D, Wang F, Liu H, Chen M. Enhanced photocatalytic performance of S/Cd co-doped g-C3N4 nanorods for degradation of dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Yuan X, Liu X. g-C 3N 4/TiO 2-B{100} heterostructures used as promising photocatalysts for water splitting from a hybrid density functional study. Phys Chem Chem Phys 2022; 24:17703-17715. [PMID: 35838206 DOI: 10.1039/d2cp01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of heterostructures has been shown to be a good strategy to improve photocatalytic performance. By using first-principles calculation based on hybrid density functionals, the photocatalytic mechanism of g-C3N4/TiO2-B{100} heterostructures is investigated to understand the process of water decomposition. We find that the reduction of the band gap of g-C3N4/TiO2-B{100} heterostructures enhances the visible light response range. g-C3N4/TiO2-B{100} heterostructures have direct band gaps, staggered band alignment, electron flow from g-C3N4 to TiO2-B{100} surfaces and straddling water decomposition potential, and are potential Z-scheme photocatalysts. Photoinduced carriers can be effectively separated using the Z-scheme photocatalytic mechanism. Our results demonstrate that g-C3N4/TiO2-B{100} heterostructures can enhance light absorption, prolong the life of photoinduced carriers, and further improve the photocatalytic activity. We believe that our findings can provide a reference for explaining the enhancement mechanism of the g-C3N4/TiO2 photocatalyst as observed in the experiment.
Collapse
Affiliation(s)
- Xiaojia Yuan
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China.
| | - Xiaojie Liu
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China. .,Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Educations, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
10
|
Zhu K, Wang W, Zhang B, Chen X, Ma D, Wang X, Zhang R, Liu Y, Dong P, Xi X. Interface Engineering of a 2D/2D BiVO 4/Bi 4V 2O 10 Heterostructure with Improved Photocatalytic Photoredox Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7558-7566. [PMID: 35666859 DOI: 10.1021/acs.langmuir.2c00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bismuth vanadate (BiVO4) is a promising photocatalyst for water pollution degradation and photocatalytic oxygen evolution. In this work, we prepared 2D/2D BiVO4-Bi4V2O10 heterostructure with tight interfacial contact via a facile one-step hydrothermal process. The crystal structure and morphology of the samples could be easily regulated by changing the pH values of the solution. The BiVO4-Bi4V2O10 heterostructure exhibited an enhanced photodegradation rate of Cr(VI) and oxygen evolution that of bare BiVO4, indicating that the synergistic effect and the interfacial fusions between BiVO4 and Bi4V2O10 can effectively promote the migration and separation rate of photoexcited charge carriers.
Collapse
Affiliation(s)
- Kai Zhu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Wuyou Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Beibei Zhang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xiaowei Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Dongqi Ma
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xuewen Wang
- . Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
| | - Rongbin Zhang
- . Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xinguo Xi
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| |
Collapse
|
11
|
Li X, Lu S, Yi J, Shen L, Chen Z, Xue H, Qian Q, Yang MQ. Ultrathin Two-Dimensional ZnIn 2S 4/Ni x-B Heterostructure for High-Performance Photocatalytic Fine Chemical Synthesis and H 2 Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25297-25307. [PMID: 35605284 DOI: 10.1021/acsami.2c02367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic H2 evolution coupled with organic transformation provides a new avenue to cooperatively produce clean fuels and fine chemicals, enabling a more efficient conversion of solar energy. Here, a novel two-dimensional (2D) heterostructure of ultrathin ZnIn2S4 nanosheets decorated with amorphous nickel boride (Nix-B) is prepared for simultaneous photocatalytic anaerobic H2 generation and aromatic aldehydes production. This ZnIn2S4/Nix-B catalyst elaborately combines the ultrathin structure advantage of the ZnIn2S4 semiconductor and the cocatalytic function of Nix-B. A high H2 production rate of 8.9 mmol h-1 g-1 is delivered over the optimal ZnIn2S4/Nix-B with a stoichiometric production of benzaldehyde, which is about 22 times higher than ZnIn2S4. Especially, the H2 evolution rate is much higher than the value (2.8 mmol h-1 g-1) of the traditional photocatalytic half reaction of H2 production with triethanolamine as a sacrificial agent. The apparent quantum yield reaches 24% at 420 nm, representing an advanced photocatalyst system. Moreover, compared with traditional sulfide, hydroxide, and even noble metal modified ZnIn2S4/M counterparts (M = NiS, Ni(OH)2, Pt), the ZnIn2S4/Nix-B also maintains markedly higher photocatalytic activity, showing a highly efficient and economical advantage of the Nix-B cocatalyst. This work sheds light on the exploration of 2D ultrathin semiconductors decorated with novel transition metal boride cocatalyst for efficient photocatalytic organic transformation integrated with solar fuel production.
Collapse
Affiliation(s)
- Xinwei Li
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Jiayu Yi
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Lijuan Shen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Hun Xue
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
12
|
Zheng X, Cong H, Yang T, Ji K, Wang C, Chen M. High-efficiency 2D nanosheet exfoliation by a solid suspension-improving method. NANOTECHNOLOGY 2022; 33:185602. [PMID: 35030544 DOI: 10.1088/1361-6528/ac4b7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials with mono or few layers have wide application prospects, including electronic, optoelectronic, and interface functional coatings in addition to energy conversion and storage applications. However, the exfoliation of such materials is still challenging due to their low yield, high cost, and poor ecological safety in preparation. Herein, a safe and efficient solid suspension-improving method was proposed to exfoliate hexagonal boron nitride nanosheets (hBNNSs) in a large yield. The method entails adding a permeation barrier layer in the solvothermal kettle, thus prolonging the contact time between the solvent and hexagonal boron nitride (hBN) nanosheet and improving the stripping efficiency without the need for mechanical agitation. In addition, the proposed method selectively utilizes a matching solvent that can reduce the stripping energy of the material and employs a high-temperature steam shearing process. Compared with other methods, the exfoliating yield ofhBNNSs is up to 42.3% at 150 °C for 12 h, and the strategy is applicable to other 2D materials. In application, the ionic conductivity of a PEO/hBNNSs composite electrolytes reached 2.18 × 10-4S cm-1at 60 °C. Overall, a versatile and effective method for stripping 2D materials in addition to a new safe energy management strategy were provided.
Collapse
Affiliation(s)
- Xuewen Zheng
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Haifeng Cong
- School of Chemical Engineering and Technology Tianjin University, Tianjin 300072, People's Republic of China
| | - Ting Yang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Kemeng Ji
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Chengyang Wang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Mingming Chen
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
13
|
Ghosh HNATH, Goswami T, Bhatt H, Yadav DK. Atomically Thin 2D Photocatalysts for Boosted H2 Production from the perspective of Transient Absorption Spectroscopy. Phys Chem Chem Phys 2022; 24:19121-19143. [DOI: 10.1039/d2cp02148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited state photophysical processes play the most important role in deciding the efficiency of any photonic applications like solar light driven H2 evolution, which is considered to be the next...
Collapse
|
14
|
Gu D, Tao X, Chen H, Ouyang Y, Zhu W, Du Y. Two-dimensional polarized MoTe 2/GeS heterojunction with an intrinsic electric field for photocatalytic water-splitting. RSC Adv 2021; 11:34048-34058. [PMID: 35497299 PMCID: PMC9042384 DOI: 10.1039/d1ra05840a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023] Open
Abstract
The construction of van der Waals heterostructures based on 2D polarized materials is a unique technique to achieve enhanced photocatalytic performance. We have investigated the intrinsic electric field and photocatalytic properties of the MoTe2/GeS heterostructure via first-principles calculations. The results showed that a dipole-induced electric field induced by the GeS monolayer and an interface-induced electric field induced by the interface between the GeS monolayer and the MoTe2 monolayer emerge in the 2D polarized MoTe2/GeS heterostructure. The dipole-induced electric field contributes mainly to the total intrinsic electric field. Moreover, the 2D polarized MoTe2/GeS heterostructure possesses many excellent and distinguished photocatalytic performance parameters, such as a direct semiconductor bandgap of 1.524 eV, a wide light spectrum ranging from the ultraviolet to near-infrared region with a high absorption coefficient (about 106 cm−1), a total intrinsic electric field, which reduces the probability of the recombination of photo-generated electron–hole pairs effectively, and a suitable band alignment for the water-splitting reaction. These indicate that the 2D polarized MoTe2/GeS van der Waals heterostructure is a potential novel high-efficient photocatalyst for water-splitting. The 2D polarized material-based MoTe2/GeS heterojunction would be a highly efficient photocatalyst for producing hydrogen energy.![]()
Collapse
Affiliation(s)
- Di Gu
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 People's Republic of China .,School of Physical Science and Technology, Guangxi University Nanning 530004 People's Republic of China
| | - Xiaoma Tao
- School of Physical Science and Technology, Guangxi University Nanning 530004 People's Republic of China
| | - Hongmei Chen
- School of Physical Science and Technology, Guangxi University Nanning 530004 People's Republic of China
| | - Yifang Ouyang
- School of Physical Science and Technology, Guangxi University Nanning 530004 People's Republic of China
| | - Weiling Zhu
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 People's Republic of China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 China
| |
Collapse
|
15
|
Zhang W, Xu D, Wang F, Chen M. Element-doped graphitic carbon nitride: confirmation of doped elements and applications. NANOSCALE ADVANCES 2021; 3:4370-4387. [PMID: 36133458 PMCID: PMC9417723 DOI: 10.1039/d1na00264c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Doping is widely reported as an efficient strategy to enhance the performance of graphitic carbon nitride (g-CN). In the study of element-doped g-CN, the characterization of doped elements is an indispensable requirement, as well as a huge challenge. In this review, we summarize some useful characterization methods which can confirm the existence and chemical states of doped elements. The advantages and shortcomings of these characterization methods are discussed in detail. Various applications of element-doped g-CN and the function of doped elements are also introduced. Overall, this review article aims to provide helpful information for the research of element-doped g-CN.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Datong Xu
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Fengjue Wang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Meng Chen
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| |
Collapse
|
16
|
Yao J, Yang G. Multielement 2D layered material photodetectors. NANOTECHNOLOGY 2021; 32:392001. [PMID: 34111857 DOI: 10.1088/1361-6528/ac0a16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
The pronounced quantum confinement effects, outstanding mechanical strength, strong light-matter interactions and reasonably high electric transport properties under atomically thin limit have conjointly established 2D layered materials (2DLMs) as compelling building blocks towards the next generation optoelectronic devices. By virtue of the diverse compositions and crystal structures which bring about abundant physical properties, multielement 2DLMs (ME2DLMs) have become a bran-new research focus of tremendous scientific enthusiasm. Herein, for the first time, this review provides a comprehensive overview on the latest evolution of ME2DLM photodetectors. The crystal structures, synthesis, and physical properties of various experimentally realized ME2DLMs as well as the development in metal-semiconductor-metal photodetectors are comprehensively summarized by dividing them into narrow-bandgap ME2DLMs (including Bi2O2X (X = S, Se, Te), EuMTe3(M = Bi, Sb), Nb2XTe4(X = Si, Ge), Ta2NiX5(X = S, Se), M2PdX6(M = Ta, Nb; X = S, Se), PbSnS2), moderate-bandgap ME2DLMs (including CuIn7Se11, CuTaS3, GaGeTe, TlMX2(M = Ga, In; X = S, Se)), wide-bandgap ME2DLMs (including BiOX (X = F, Cl, Br, I), MPX3(M = Fe, Ni, Mn, Cd, Zn; X = S, Se), ABP2X6(A = Cu, Ag; B = In, Bi; X = S, Se), Ga2In4S9), as well as topological ME2DLMs (MIrTe4(M = Ta, Nb)). In the last section, the ongoing challenges standing in the way of further development are underscored and the potential strategies settling them are proposed, which is aimed at navigating the future advancement of this fascinating domain.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Biomaterial Properties of Femur Implant on Acetabulum Erosion: A Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.51.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hip is one in every of the various joint at intervals the body. The correct operating of this joint is essential. For the aim once the hip is injured whole, a substitution procedure of the entire joint ought to be done to reinstate its operating, that is known as absolute hip surgical process. It is finished with the assistance of inserts of various biomaterials, as an example, polymers, metals, and pottery. The primary issues with regard to the utilization of various biomaterials are the reaction of the body's instrument to wear trash. Throughout this audit, biomaterials that are developing is talked regarding aboard the wear and tear and tear conduct and instrument. To boot, the numerous properties of the biomaterials are talked regarding aboard the expected preferences and drawbacks of their utilization. Further, the blends of various biomaterials at intervals the articulating surfaces are cleft and so the problems regarding their utilization are assessed. This paper hopes to passes away an in depth review of the trauma fringe of bearing surfaces of hip prosthetic devices. Additionally, this paper can offer AN ordered blueprint of the materials nearby their favorable circumstances and detriments and besides the conceivable outcomes of use. Keywords: - Hip implant; Biomaterials; Wear mechanism; Bearing surfaces; Polymers
Collapse
|
18
|
Swain G, Sultana S, Parida K. A review on vertical and lateral heterostructures of semiconducting 2D-MoS 2 with other 2D materials: a feasible perspective for energy conversion. NANOSCALE 2021; 13:9908-9944. [PMID: 34038496 DOI: 10.1039/d1nr00931a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fossil fuels as a double-edged sword are essential to daily life. However, the depletion of fossil fuel reservoirs has increased the search for alternative renewable energy sources to procure a more sustainable society. Accordingly, energy production through water splitting, CO2 reduction and N2 reduction via photocatalytic and electrocatalytic pathways is being contemplated as a greener methodology with zero environmental pollution. Owing to their atomic-level thickness, two-dimensional (2D) semiconductor catalysts have triggered the reawakening of interest in the field of energy and environmental applications. Among them, following the unconventional properties of graphene, 2D MoS2 has been widely investigated due to its outstanding optical and electronic properties. However, the photo/electrocatalytic performance of 2D-MoS2 is still unsatisfactory due to its low charge carrier density. Recently, the development of 2D/2D heterojunctions has evoked interdisciplinary research fascination in the scientific community, which can mitigate the shortcomings associated with 2D-MoS2. Following the recent research trends, the present review covers the recent findings and key aspects on the synthetic methods, fundamental properties and practical applications of semiconducting 2D-MoS2 and its heterostructures with other 2D materials such as g-C3N4, graphene, CdS, TiO2, MXene, black phosphorous, and boron nitride. Besides, this review details the viable application of these materials in the area of hydrogen energy production via the H2O splitting reaction, N2 fixation to NH3 formation and CO2 reduction to different value-added hydrocarbons and alcohol products through both photocatalysis and electrocatalysis. The crucial role of the interface together with the charge separation principle between two individual 2D structures towards achieving satisfactory activity for various applications is presented. Overall, the current studies provide a snapshot of the recent breakthroughs in the development of various 2D/2D-based catalysts in the field of energy production, delivering opportunities for future research.
Collapse
Affiliation(s)
- Gayatri Swain
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Jagamohan Nagar, Jagamara, Bhubaneswar-751030, Odisha, India.
| | | | | |
Collapse
|
19
|
Lang X, Gopalan S, Fu W, Ramakrishna S. Photocatalytic Water Splitting Utilizing Electrospun Semiconductors for Solar Hydrogen Generation: Fabrication, Modification and Performance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoling Lang
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan 364000, Fujian, P. R. China
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Saianand Gopalan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Wanlin Fu
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu 211189, Nanjing, P. R. China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
| |
Collapse
|
20
|
|
21
|
Coleto U, Amoresi RAC, Pereira CAM, Schmidt BW, Iani IM, Simões AZ, Monteiro ES, Longo E, Zaghete MA, Perazolli LA. Correlation of photocatalytic activity and defects generated in Ca2+-based heterojunctions. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Two-Dimensional Materials and Composites as Potential Water Splitting Photocatalysts: A Review. Catalysts 2020. [DOI: 10.3390/catal10040464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen production via water dissociation under exposure to sunlight has emanated as an environmentally friendly, highly productive and expedient process to overcome the energy production and consumption gap, while evading the challenges of fossil fuel depletion and ecological contamination. Various classes of materials are being explored as viable photocatalysts to achieve this purpose, among which, the two-dimensional materials have emerged as prominent candidates, having the intrinsic advantages of visible light sensitivity; structural and chemical tuneability; extensively exposed surface area; and flexibility to form composites and heterostructures. In an abridged manner, the common types of 2D photocatalysts, their position as potential contenders in photocatalytic processes, their derivatives and their modifications are described herein, as it all applies to achieving the coveted chemical and physical properties by fine-tuning the synthesis techniques, precursor ingredients and nano-structural alterations.
Collapse
|
23
|
Shi J, Mao L, Cai C, Li G, Cheng C, Zheng B, Hu Y, Huang Z, Hu X, Żyła G. One-pot fabrication of 2D/2D HCa2Nb3O10/g-C3N4 type II heterojunctions towards enhanced photocatalytic H2 evolution under visible-light irradiation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01202e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effective 2D-composite photocatalysts, HCa2Nb3O10/g-C3N4, with enhanced photocatalytic activity are conveniently synthesized by a facile one-pot method.
Collapse
|