1
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Sun D, Sun X, Li D, Wang M, Song S, Liu C, Ma N, Yin X, Wang C. UCNPs-labeled electrospun scaffolds used to monitor in vivo degradation and bone tissue regeneration. Colloids Surf B Biointerfaces 2024; 237:113860. [PMID: 38520951 DOI: 10.1016/j.colsurfb.2024.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Biodegradable electrospun bone repair materials are effective means to treat bone defects. However, because the electrospun substrates are mostly organic polymer materials, there is a lack of real-time and intuitive monitoring methods for their degradation in vivo. Therefore, it is of great significance to develop in vivo traced electrospun bone repair materials for postoperative observation of their degradation. In this research, polycaprolactone/up-conversion nanoparticles/magnesium oxide (PCL/UCNPs/MgO) composite scaffolds were prepared by electrospun based on the luminescence characteristics of up-conversion nanoparticles (UCNPs) under near infrared excitation and the osteogenic ability of MgO. The in vivo and in vitro degradation results showed that with the increase of time, the electrospun scaffolds gradually degraded and its luminescence intensity decreased. The addition of UCNPs can effectively monitor the degradation of the scaffolds. In addition, the prepared electrospun scaffolds had great biocompatibility, among which PCL-1%UCNPs-1%MgO (P1U1M) electrospun scaffolds had obvious effect on promoting osteogenic differentiation of mouse embryonic osteoblasts cells (MC3T3-E1) in vitro. In conclusion, P1U1M electrospun scaffolds have the potential to induce bone regeneration at bone defect sites, and can monitor the degradation of electrospun scaffolds. It may be a potential candidate material for bone regeneration in defect area.
Collapse
Affiliation(s)
- Danfang Sun
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Xirao Sun
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Dan Li
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Meng Wang
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Siyu Song
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chang Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, China
| | - Nan Ma
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, China
| | - Xiumei Yin
- School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Chengyue Wang
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
3
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Ren N, Liang N, Dong M, Feng Z, Meng L, Sun C, Wang A, Yu X, Wang W, Xie J, Liu C, Liu H. Stem Cell Membrane-Encapsulated Zeolitic Imidazolate Framework-8: A Targeted Nano-Platform for Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202485. [PMID: 35633288 DOI: 10.1002/smll.202202485] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) have been recognized as one of the most promising pharmaceutical multipotent cells, and a key step for their wide application is to safely and efficiently regulate their activities. Various methods have been proposed to regulate the directional differentiation of MSCs during tissue regeneration, such as nanoparticles and metal ions. Herein, nanoscale zeolitic imidazolate framework-8 (ZIF-8), a Zn-based metal-organic framework, is modified to direct MSCs toward an osteoblast lineage. Specifically, ZIF-8 nanoparticles are encapsulated using stem cell membranes (SCMs) to mimic natural molecules and improve the biocompatibility and targeted ability toward MSCs. SCM/ZIF-8 nanoparticles adjust the sustained release of Zn2+ , and promote their specific internalization toward MSCs. The internalized SCM/ZIF-8 nanoparticles show excellent biocompatibility, and increase MSCs' osteogenic potentials. Moreover, RNA-sequencing results elucidate that the activated cyclic adenosine 3,5-monophosphate (cAMP)-PKA-CREB signaling pathway can be dominant in accelerating osteogenic differentiation. In vivo, SCM/ZIF-8 nanoparticles greatly promote the formation of new bone tissue in the femoral bone defect detected by 3D micro-CT, hematoxylin and eosin staining, and Masson staining after 4 weeks. Overall, the SCM-derived ZIF-8 nanostructures achieve the superior targeting ability, biocompatibility, and enhanced osteogenesis, providing a constructive design for tissue repair.
Collapse
Affiliation(s)
- Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Mengwei Dong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Ling Meng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Aizhu Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Xin Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Juan Xie
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Institute of Stomatology, Shandong University, Jinan, 250012, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
5
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Liang N, Ren N, Feng Z, Sun Z, Dong M, Wang W, Liu F, Sun C, Zhou W, Xing Z, Wang J, Liu C, Liu H. Biomimetic Metal-Organic Frameworks as Targeted Vehicles to Enhance Osteogenesis. Adv Healthc Mater 2022; 11:e2102821. [PMID: 35182414 DOI: 10.1002/adhm.202102821] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Although engineered nanoparticles loaded with specific growth factors are used to regulate differentiation of stem cells, the low loading efficiency and biocompatibility are still great challenges in tissue repair. A nature-inspired biomimetic delivery system with targeted functions is attractive for enhancing cell activity and controlling cell fate. Herein, a stem cell membrane (SCM)-wrapped dexamethasone (DEX)-loaded zeolitic imidazolate framework-8 (ZIF-8) is constructed, which integrates the synthetic nanomaterials with native plasma membrane, to achieve efficient DEX delivery and DEX-mediated bone repair. The DEX@ZIF-8-SCM enables high DEX loading capacity, modulates the sustained release, and facilitates the specific uptake of mesenchymal stem cells (MSCs), owing to the porous property of ZIF-8 and the innate targeting capability of SCM. The endocytosed DEX@ZIF-8-SCM shows high cytocompatibility and greatly enhances the osteogenic differentiation of MSCs. Furthermore, RNA-sequencing data reveal that the phosphoinositide 3-kinase (PI3K)-Akt signaling pathways are activated and dominantly involved in the accelerated osteogenesis. In the bone defect model, the administrated DEX@ZIF-8-SCM exerts excellent biocompatibility and effectively promotes bone regeneration. Overall, the SCM-derived biomimetic nanoplatform achieves targeted delivery, excellent biosafety, and enhanced osteogenic differentiation and bone repair, which provides a new and valid strategy for treating various tissue injuries.
Collapse
Affiliation(s)
- Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery Qilu Hospital of Shandong University Institute of Stomatology Shandong University Jinan 250012 P. R. China
| | - Mengwei Dong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhiqing Xing
- Ji'nan Pantheum Biological Technology Limited Company Jinan 250100 P. R. China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery Qilu Hospital of Shandong University Institute of Stomatology Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
7
|
Jurga N, Przybylska D, Kamiński P, Tymiński A, Grześkowiak BF, Grzyb T. Influence of the synthesis route on the spectroscopic, cytotoxic, and temperature-sensing properties of oleate-capped and ligand-free core/shell nanoparticles. J Colloid Interface Sci 2022; 606:1421-1434. [PMID: 34492477 DOI: 10.1016/j.jcis.2021.08.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023]
Abstract
The right choice of synthesis route for upconverting nanoparticles (UCNPs) is crucial for obtaining a well-defined product with a specific application capability. Thus we decided to compare the physicochemical, cytotoxic, and temperature-sensing properties of UCNPs obtained from different rare earth (RE) ions, which has been made for the first time in a single study. The core/shell NaYF4:Yb3+,Er3+/NaYF4 UCNPs were obtained by reaction in a mixture of oleic acid and octadecene, and their highly stable water colloids were prepared using the ligand-free modification method. Both oleate-capped and ligand-free UCNPs exhibited a bright upconversion emission upon 975 nm excitation. Moreover, slope values, emission quantum yields, and luminescence lifetimes confirmed an effective energy transfer between the Yb3+ and Er3+ ions. Additionally, the water colloids of the UCNPs showed temperature-sensing properties with a good thermal sensitivity level, higher than 1 % K-1 at 358 K. Evaluation of the cytotoxicity profiles of the obtained products indicated that cell viability was decreased in a dose-dependent manner in the analyzed concentration range.
Collapse
Affiliation(s)
- Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Dominika Przybylska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Piotr Kamiński
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Artur Tymiński
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Bartosz F Grześkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, Poznań 61-614, Poland.
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| |
Collapse
|
8
|
Effects of scandium chloride on osteogenic and adipogenic differentiation of mesenchymal stem cells. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosens Bioelectron 2021; 193:113531. [PMID: 34333363 DOI: 10.1016/j.bios.2021.113531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
We propose a new platform that can integrate three-dimensional cell culture scaffold and a surface-enhanced Raman spectroscopy (SERS)-based biosensor by stacking them to form a multilayer system, which would allow monitoring of the protein markers secreted from cultured stem cells without periodic cell and/or media collection. The cell culture scaffold supported the proliferation and osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). The SERS capture substrate detected protein markers in combination with SERS tag made with Au-Ag alloy nanoboxes. Incorporating the different Raman reporters into the SERS tag allowed easy identification of target proteins for multiplex assays. The resultant SERS-based immunoassay could detect the pg/mL levels of protein markers without crosstalk and interference. When one ADSC culture scaffold and multiple SERS capture substrates were integrated and incubated in differentiation culture media, our system was sufficiently sensitive to monitor time-dependent secretion of three different osteogenic protein markers from ADSCs during their osteogenic differentiation. Since the sensor and cell culture scaffold can be manipulated independently, various cell and biomarker combinations are possible to obtain relevant information regarding the actual state of the different types of cells.
Collapse
|
10
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Long-Term Tri-Modal In Vivo Tracking of Engrafted Cartilage-Derived Stem/Progenitor Cells Based on Upconversion Nanoparticles. Biomolecules 2021; 11:biom11070958. [PMID: 34209859 PMCID: PMC8301782 DOI: 10.3390/biom11070958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Cartilage-derived stem/progenitor cells (CSPCs) are a potential choice for seed cells in osteal and chondral regeneration, and the outcomes of their survival and position distribution in vivo form the basis for the investigation of their mechanism. However, the current use of in vivo stem cell tracing techniques in laboratories is relatively limited, owing to their high operating costs and cytotoxicity. Herein, we performed tri-modal in vivo imaging of CSPCs during subcutaneous chondrogenesis using upconversion nanoparticles (UCNPs) for 28 days. Distinctive signals at accurate positions were acquired without signal noise from X-ray computed tomography, magnetic resonance imaging, and upconversion luminescence. The measured intensities were all significantly proportional to the cell numbers, thereby enabling real-time in vivo quantification of the implanted cells. However, limitations of the detectable range of cell numbers were also observed, owing to the imaging shortcomings of UCNPs, which requires further improvement of the nanoparticles. Our study explores the application value of upconversion nanomaterials in the tri-modal monitoring of implanted stem cells and provides new perspectives for future clinical translation.
Collapse
|
12
|
Gupta M, Nagarajan R, Ramamurthy C, Vivekanandan P, Prakash GV. KLa (0.95-x)Gd xF 4:Eu 3+ hexagonal phase nanoparticles as luminescent probes for in vitro Huh-7 cancer cell imaging. Dalton Trans 2021; 50:5197-5207. [PMID: 33881075 DOI: 10.1039/d1dt00539a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A facile chemical route is reported for synthesizing red-emitting photoluminescent/MRI multi-functional KLa(0.95-x)GdxF4:Eu3+ (x = 0 to 0.4) bio-compatible nanomaterials for targeted in vitro tumor imaging. Hexagonal phase pure nanoparticles show a significant and systematic change in morphology with enhanced photoluminescence due to the substitution of La3+ with Gd3+ ions. Single phase β-KLa(0.95-x)GdxF4:Eu3+ exhibits multifunctional properties, both intense red emission and strong paramagnetism for high-contrast bioimaging applications. These silica capped magnetic/luminescent nanoparticles show long-term colloidal stability, optical transparency in water, strong red emission, and low cytotoxicity. The cellular uptake of coated nanoparticles was investigated in liver cancer cell line Huh-7. Our findings suggest that these nanoparticles can serve as highly luminescent imaging probes for in vitro applications with potential for in vivo and live cell imaging applications.
Collapse
Affiliation(s)
- Mohini Gupta
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India. and Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Rajamani Nagarajan
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - G Vijaya Prakash
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India.
| |
Collapse
|
13
|
Xie J, Hu W, Tian D, Wei Y, Zheng G, Huang L, Liang E. Selective growth and upconversion photoluminescence of Y-based fluorides: from NaYF 4: Yb/Er to YF 3: Yb/Er crystals. NANOTECHNOLOGY 2020; 31:505605. [PMID: 33021219 DOI: 10.1088/1361-6528/abb627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Y-based fluorides have been recognized as most efficient host materials for upconversion photoluminescence (UC-PL). Herein, we have produced a series of Yb/Er doped Y-based fluorides with specific crystal structures, shapes and sizes. The selective growth process is governed by our pre-designed surfactant 4, 4'-((2,5-bi's (2-(diethylamino) ethoxy) -1,4-phenylene) bis (ethyne-2,1-diyl)) dibenzoic acid (DBA) and selective solvents. It is shown that highly pure hexagonal microprisms and cubic microspheres of NaYF4: Yb/Er could be selectively grown in water at low and high content of DBA, respectively, while only orthorhombic nanowires and microflowers of YF3: Yb/Er could be obtained in ethanol. Finally, all these materials obtained exhibit strong UC-PL signal while the UC emission intensity of the NaYF4: Yb/Er hexagonal microprisms is much higher than those of the cubic microspheres and orthorhombic YF3 nanowires and microflowers. This work provides a novel method for selective crystal growth of Y-based fluorides with specific shape, size, crystal phase and highly UC-PL efficiency by breaking the intrinsic limitation of crystal growth habit, which could be possibly extended to the controlled synthesis of other related materials.
Collapse
Affiliation(s)
- Juan Xie
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wenbo Hu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yang Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Erjun Liang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
14
|
Liu N, Gobeil N, Evers P, Gessner I, Rodrigues EM, Hemmer E. Water dispersible ligand-free rare earth fluoride nanoparticles: water transfer versus NaREF 4-to-REF 3 phase transformation. Dalton Trans 2020; 49:16204-16216. [PMID: 32330218 DOI: 10.1039/d0dt01080d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The chemical stability of oleate-capped sub-10 nm α- and β-NaREF4 NPs (RE = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu for α- and RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy for β-phase NPs) was evaluated under the acidic conditions used for ligand removal towards water dispersibility. It was found that for such small NPs, a pH lower than 3 was necessary for the water transfer to be efficient and to yield well-dispersed ligand-free NPs. In stark contrast to the generally considered good chemical stability of NaREF4, these conditions were observed to pose a risk to phase transformation of the NaREF4 NPs into much larger, hexagonal- or orthorhombic-phase REF3, depending on the NP composition. A correlation between the thermodynamic stability of the α/β-NaREF4 and the hexagonal/orthorhombic REF3 phases - dictated by the RE ion choice - and the chemical stability of the NPs was found. For instance, β-NaGdF4 NPs remained stable, while α-NaGdF4 NPs underwent phase transformation into hexagonal GdF3. More general, NaREF4 NPs based on lighter RE ions were more prone towards phase transformation, while those based on heavier RE ions exhibited stability. Herein, within the RE series, the borderline for phase transformation was identified as Tb/Dy for α-NaREF4 NPs and Sm/Eu for β-NaREF4 NPs, respectively. Also, given the large interest in luminescent NPs for, e.g. biomedical applications, optically active Ln3+ ions (Ln = Nd, Eu, Tb, Er/Yb) were doped into α/β-NaGdF4 host NPs, and the dopant influence on the chemical stability was evaluated. Steady state and time-resolved spectroscopy unveiled spectral features characteristic for Ln3+ f-f transitions, i.e. downshifting and upconversion, before and after ligand removal. Overall, the results herein described emphasise the importance of minding the chemical procedure used for ligand removal of NaREF4 NPs of different crystalline phases and RE compositions.
Collapse
Affiliation(s)
- Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Ren N, Feng Z, Liang N, Xie J, Wang A, Sun C, Yu X. NaGdF 4:Yb/Er nanoparticles of different sizes for tracking mesenchymal stem cells and their effects on cell differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110827. [PMID: 32279755 DOI: 10.1016/j.msec.2020.110827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) hold great promise in the field of regenerative medicine, and great effort goes into investigating the mechanisms underlying their therapeutic effects. These investigations necessitate the development of sensitive and reliable methods of tracking stem cells. As the unique physicochemical properties of β-NaGdF4:Yb/Er upconversion nanoparticles make them highly efficient fluorescent probes, they could be utilized to track stem cells through bio-imaging. However, their biocompatibility constitutes a major challenge to their use in biomedical applications. In this paper, we prepared ligand-free spherical β- NaGdF4:Yb/Er nanoparticles of two different sizes (~15 and ~30 nm in diameter) and investigated their internalization into rat bone marrow-derived MSCs (rBMSCs), as well as their effects on cell proliferation, osteogenic and adipogenic differentiation. Even though particles of both sizes were efficiently taken up by the cells, the larger particles had a stronger fluorescence intensity but their proliferation was not significantly affected; this makes them superior for cell imaging. Analysis of multiple markers revealed that the nanoparticles, especially the larger ones, promoted the process of osteogenic differentiation. In contrast, adipogenesis was slightly hindered by the larger particles, whereas the smaller ones did not affect the process. As a whole, this study suggests that ligand-free spherical β-NaGdF4:Yb/Er particles of appropriate size are compatible with stem cell proliferation and differentiation, which makes them promising agents for biomedical applications.
Collapse
Affiliation(s)
- Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Xie
- School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Aizhu Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Xin Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| |
Collapse
|