1
|
Kong HY, Jin QH, Chen XH, Xu DX, Zhao QY, Zhang XX, Swanson RJ, Jiang TA. Cardiovascular response to nanosecond pulses is milder in percutaneous ablation of hepatocellular carcinoma compared with microsecond pulses. Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00096-1. [PMID: 38910059 DOI: 10.1016/j.hbpd.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Hai-Ying Kong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qian-Hui Jin
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, The First Hospital of Jiaxing, Jiaxing University College of Medicine, Jiaxing 314000, China
| | - Xin-Hua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| | - Dan-Xia Xu
- Department of Ultrasonography, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi-Yu Zhao
- Department of Ultrasonography, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiong-Xin Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - R James Swanson
- Anatomy Department, Liberty University College of Osteopathic Medicine, Lynchburg, VA, USA
| | - Tian-An Jiang
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China; Department of Ultrasonography, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Domingo-Diez J, Souiade L, Manzaneda-González V, Sánchez-Díez M, Megias D, Guerrero-Martínez A, Ramírez-Castillejo C, Serrano-Olmedo J, Ramos-Gómez M. Effectiveness of Gold Nanorods of Different Sizes in Photothermal Therapy to Eliminate Melanoma and Glioblastoma Cells. Int J Mol Sci 2023; 24:13306. [PMID: 37686114 PMCID: PMC10488215 DOI: 10.3390/ijms241713306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Gold nanorods are the most commonly used nanoparticles in photothermal therapy for cancer treatment due to their high efficiency in converting light into heat. This study aimed to investigate the efficacy of gold nanorods of different sizes (large and small) in eliminating two types of cancer cell: melanoma and glioblastoma cells. After establishing the optimal concentration of nanoparticles and determining the appropriate time and power of laser irradiation, photothermal therapy was applied to melanoma and glioblastoma cells, resulting in the highly efficient elimination of both cell types. The efficiency of the PTT was evaluated using several methods, including biochemical analysis, fluorescence microscopy, and flow cytometry. The dehydrogenase activity, as well as calcein-propidium iodide and Annexin V staining, were employed to determine the cell viability and the type of cell death triggered by the PTT. The melanoma cells exhibited greater resistance to photothermal therapy, but this resistance was overcome by irradiating cells at physiological temperatures. Our findings revealed that the predominant cell-death pathway activated by the photothermal therapy mediated by gold nanorods was apoptosis. This is advantageous as the presence of apoptotic cells can stimulate antitumoral immunity in vivo. Considering the high efficacy of these gold nanorods in photothermal therapy, large nanoparticles could be useful for biofunctionalization purposes. Large nanorods offer a greater surface area for attaching biomolecules, thereby promoting high sensitivity and specificity in recognizing target cancer cells. Additionally, large nanoparticles could also be beneficial for theranostic applications, involving both therapy and diagnosis, due to their superior detection sensitivity.
Collapse
Affiliation(s)
- Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
| | - Lilia Souiade
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
| | - Vanesa Manzaneda-González
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain (A.G.-M.)
| | - Marta Sánchez-Díez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain (A.G.-M.)
| | - Carmen Ramírez-Castillejo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento Biotecnología-B.V. ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Oncología, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier Serrano-Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Milagros Ramos-Gómez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (J.D.-D.); (M.S.-D.); (C.R.-C.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Experimental Neurology Unit, Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
3
|
Zhou H, Wang Z, Dong Y, Alhaskawi A, Tu T, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Li P, Wu B, Chen Y, Lu H. New advances in treatment of skin malignant tumors with nanosecond pulsed electric field: A literature review. Bioelectrochemistry 2023; 150:108366. [PMID: 36641842 DOI: 10.1016/j.bioelechem.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nanosecond pulsed electric field, with its unique bioelectric effect, has shown broad application potential in the field of tumor therapy, especially in malignant tumors and skin tumors. MAIN BODY In this paper, we discuss the therapeutic effects and mechanisms of nanosecond pulsed electric field on three common skin cancers, namely, malignant melanoma, squamous cell carcinoma and basal cell carcinoma, as well as its application to other benign skin diseases and future development and improvement directions. CONCLUSION In general, nanosecond pulsed electric field mainly exerts its ablative effect on tumors through subcellular membrane electroporation effect. It is cell type-specific, has less thermal damage, and can have synergistic effect with chemotherapy drugs, making it a very promising new method for tumor treatment.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Zewei Wang
- Zhejiang University School of Medicine, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Tian Tu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | | | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China
| | | | - Pengfei Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China
| | - Bin Wu
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Ruidi Biotech Ltd. #2959 Yuhangtang Road, Hangzhou, Zhejiang Province 310000, PR China
| | - Yonggang Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Ruidi Biotech Ltd. #2959 Yuhangtang Road, Hangzhou, Zhejiang Province 310000, PR China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003, PR China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China.
| |
Collapse
|
4
|
Zhao J, Lu H, Xu D, Sun R, Fang C, Zhao Q, He C, Pan Y, Xu F, Jiang T. Neutrophil membrane-coated nanoparticles for enhanced nanosecond pulsed electric field treatment of pancreatic cancer. Int J Hyperthermia 2022; 39:1026-1035. [PMID: 35914867 DOI: 10.1080/02656736.2022.2093994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVE Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Poor prognosis and low survival rates have driven the development of novel therapeutic strategies. Nanosecond pulsed electric field has emerged as a novel, minimal invasive and non-thermal treatment for solid tumors. It is of great significance to study the combination therapy of nsPEF and other treatment strategies for pancreatic cancer. METHODS We developed neutrophil membrane-wrapped liposomal nanoparticles loaded with gemcitabine (NE/Lip-GEM) and investigated their use as a complementary agent for nsPEF treatment. RESULTS Our results showed that neutrophil-mediated delivery of liposomal-gemcitabine (NE/Lip-GEM) efficiently inhibited the growth of pancreatic tumors in mice whose has been treated with incomplete nsPEF ablation. CONCLUSIONS The combination of nsPEF and NE/Lip-GEM may be a promising synergistic strategy for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Huidan Lu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danxia Xu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chang He
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Pan
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianna Jiang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
6
|
Mi Y, Dai L, Xu N, Zheng W, Ma C, Chen W, Zhang Q. Viability inhibition of A375 melanoma cells in vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. NANOTECHNOLOGY 2021; 32:385101. [PMID: 34144549 DOI: 10.1088/1361-6528/ac0caf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Poor efficacy and low electrical safety are issues in the treatment of tumours with pulsed magnetic fields (PMFs). Based on the cumulative effect of high-frequency pulses and the enhanced perforation effect of targeted nanoparticles, this article proposes for the first time a new method that combines high-frequency nanosecond-pulsed magnetic fields (nsPMFs) with folic acid-superparamagnetic iron oxide nanoparticles (SPIONs-FA) to kill tumour cells. After determining the safe concentration of the targeted iron oxide nanoparticles, CCK-8 reagent was used to detect the changes in cell viability after utilising the combined method. After that, PI macromolecular dyes were used to stain the cells. Then, the state of the cell membrane was observed by scanning electron microscopy, and other methods were applied to study the cell membrane permeability changes after the combined treatment of the cells. It was finally confirmed that the high-frequency PMF can significantly reduce cell viability through the cumulative effect. In addition, the targeted iron oxide nanoparticles can reduce the magnetic field amplitude and the number of pulses required for the high-frequency PMF to kill tumour cellsin vitrothrough magnetoporation. The objective of this research is to improve the electrical safety of the PMF with the use of nsPMFs for the safe, efficient and low-intensity treatment of tumours.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lujian Dai
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenjuan Chen
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qin Zhang
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
7
|
Khan FA, Aldahhan R, Almohazey D. Impact of gold nanoparticles on colon cancer treatment and diagnosis. Nanomedicine (Lond) 2021; 16:779-782. [PMID: 33739149 DOI: 10.2217/nnm-2021-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|