1
|
Chen P, Zhou Y, Chen M, Lun Y, Li Q, Xiao Q, Huang Y, Li J, Ye G. One-step Photocatalytic Synthesis of Fe 3O 4@Polydiallyl Isophthalate Magnetic Microspheres for Magnetocaloric Tumor Ablation and Its Potential for Tracing on MRI and CT. Eur J Pharm Biopharm 2023:S0939-6411(23)00014-0. [PMID: 36702198 DOI: 10.1016/j.ejpb.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/24/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Allyl monomers that were previously considered to be difficult to polymerize are applied, and Fe3O4@polydiallyl isophthalate (Fe3O4@PDAIP) magnetic were synthesized by one-step photopolymerization. The skeleton of the microspheres is made of diallyl isophthalate (DAIP). We obtained the microspheres using the photo-click technique in a soft template with Nano-Fe3O4 evenly disseminated in hydrophobic DAIP by cation-π and polar interaction. The obtained Fe3O4@PDAIP magnetic microspheres can achieve tumor cell necrosis temperatures (41-52 ℃) in an alternating magnetic field due to their inherent magnetic response. The results of in vitro CT and MR imaging indicate that the microspheres might be monitored accurately in vivo. Then the structural characteristics of the microspheres were confirmed by morphological analysis and physicochemical property analysis. Experiments in vitro and in vivo revealed that the microspheres had an anti-tumor effect and their biocompatibility satisfies the standards. The stability experiment proves that the microspheres have the potential for long-term effectiveness in vivo. It demonstrates the promise of Fe3O4@PDAIP magnetic microspheres in clinical applications.
Collapse
Affiliation(s)
- Piaoyi Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanfang Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mianrong Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou 510260, P.R. China
| | - Yingying Lun
- The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou 510260, P.R. China
| | - Qiuxia Li
- The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou 510260, P.R. China
| | - Qinglin Xiao
- The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou 510260, P.R. China
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiesong Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
2
|
Yoshioka NA, Faraco TA, Barud HS, Ribeiro SJL, Cremona M, Fragneaud B, Maciel IO, Quirino WG, Legnani C. Synthesis of Organic Semiconductor Nanoparticles with Different Conformations Using the Nanoprecipitation Method. Polymers (Basel) 2022; 14:polym14245336. [PMID: 36559705 PMCID: PMC9785456 DOI: 10.3390/polym14245336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, nanoparticulate materials have aroused interest in the field of organic electronics due to their high versatility which increases the efficiency of devices. In this work, four different stable conformations based on the organic semiconductors P3HT and PC71BM were synthesized using the nanoprecipitation method, including blend and core-shell nanoparticles. All nanoparticles were obtained free of surfactants and in aqueous suspensions following the line of ecologically correct routes. The structural and optoelectronic properties of the nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible absorption spectroscopy and UV-visible photoluminescence (PL). Even in aqueous media, the blend and core-shell nanoparticles exhibited a greater light absorption capacity, and these conformations proved to be effective in the process of dissociation of excitons that occurs at the P3HT donor/PC71BM acceptor interface. With all these characteristics and allied to the fact that the nanoparticles are surfactant-free aqueous suspensions, this work paves the way for the use of these colloids as a photoactive layer of organic photovoltaic devices that interface with biological systems.
Collapse
Affiliation(s)
- Nathalia A. Yoshioka
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, MG, Brazil
- Correspondence: (N.A.Y.); (C.L.)
| | - Thales A. Faraco
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, MG, Brazil
| | - Hernane S. Barud
- Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Departamento de Química, Universidade de Araraquara (UNIARA), Araraquara 14801-340, SP, Brazil
| | - Sidney J. L. Ribeiro
- Laboratório de Materiais Fotônicos, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara 14800-060, SP, Brazil
| | - Marco Cremona
- Laboratório de Optoeletrônica Molecular (LOEM), Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22453-970, RJ, Brazil
| | - Benjamin Fragneaud
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, MG, Brazil
| | - Indhira O. Maciel
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, MG, Brazil
| | - Welber G. Quirino
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, MG, Brazil
| | - Cristiano Legnani
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, MG, Brazil
- Correspondence: (N.A.Y.); (C.L.)
| |
Collapse
|