1
|
Lu L, Wang Y, Ding Y, Wang Y, Zhu Z, Lu J, Yang L, Zhang P, Yang C. Profiling Phenotypic Heterogeneity of Circulating Tumor Cells through Spatially Resolved Immunocapture on Nanoporous Micropillar Arrays. ACS NANO 2024; 18:31135-31147. [PMID: 39492759 DOI: 10.1021/acsnano.4c08893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The phenotype of circulating tumor cells (CTCs) offers valuable insights into monitoring cancer metastasis and recurrence. While microfluidics presents a promising approach for capturing these rare cells in blood, the phenotypic profiling of CTCs remains technically challenging. Herein, we developed a nanoporous micropillar array chip enabling highly efficient capture and in situ phenotypic analysis of CTCs through enhanced and tunable on-chip immunoaffinity binding. The nanoporous micropillar array addresses the fundamental limits in fluidic mass transfer, surface stagnant flow boundary effect, and interface topographic and multivalent reactions simultaneously within a single device, resulting in a synergistic enhancement of CTC immunocapture efficiency. The CTC capture efficiency increased by approximately 40% for cancer cells with low surface marker expressing. By manipulating fluidic velocity (hydrodynamic drag force) on the chip, a cell adhesion gradient was generated in the capture chamber, enabling individual CTCs with varying expression levels of epithelial cellular adhesion molecules to be immunocaptured at the corresponding spatial locations where equilibrium drag force is provided. The clinical utility of the nanoporous micropillar array was demonstrated by accurately distinguishing early and advanced stages of breast cancer and further longitudinally monitoring treatment response. We envision that the nanoporous micropillar array chip will provide an in situ capture and molecular profiling approach for CTCs and enhance the clinical application of CTC liquid biopsy.
Collapse
Affiliation(s)
- Lianyu Lu
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yue Ding
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yuqing Wang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinsong Lu
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Liu Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng Zhang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
2
|
Chen B, Wang G, Huang C, Sun Y, Zhang J, Chai Z, Guo SS, Zhao XZ, Yuan Y, Liu W. A light-induced hydrogel responsive platform to capture and selectively isolate single circulating tumor cells. NANOSCALE 2022; 14:3504-3512. [PMID: 35171188 DOI: 10.1039/d1nr06876h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isolation of circulating tumor cells (CTCs) from patients is a challenge due to the rarity of CTCs. Recently, various platforms to capture and release CTCs for downstream analysis have been developed. However, most of the reported release methods provide external stimuli to release all captured cells, which lead to lack of specificity in the pool of collected cells, and the external stimuli may affect the activity of the released cells. Here, we presented a simple method for single-cell recovery to overcome the shortcomings, which combined the nanostructures with a photocurable hydrogel, chondroitin sulfate methacryloyl (CSMA). In brief, we synthesized gelatin nanoparticles (Gnps) and modified them on flat glass (Gnp substrate) for the specific capture of CTCs. A 405 nm laser was projected onto the selected cells, and then CSMA was cured to encapsulate the selected CTCs. Unselected cells were removed with MMP-9 enzyme solution, and selected CTCs were recovered using a microcapillary. Finally, the photocurable hydrogel-encapsulated cells were analyzed by nucleic acid detection. In addition, the results suggested that the isolation platform showed good biocompatibility and successfully achieved the isolation of selected cells. In summary, our light-induced hydrogel responsive platform holds certain potential for clinical applications.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Chunyu Huang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhuomin Chai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
3
|
Schmidt M, Franken A, Wilms D, Fehm T, Neubauer HJ, Schmidt S. Selective Adhesion and Switchable Release of Breast Cancer Cells via Hyaluronic Acid Functionalized Dual Stimuli-Responsive Microgel Films. ACS APPLIED BIO MATERIALS 2021; 4:6371-6380. [PMID: 35006876 DOI: 10.1021/acsabm.1c00586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The detection of tumor cells from liquid biopsy samples is of critical importance for early cancer diagnosis, malignancy assessment, and treatment. In this work, coatings of hyaluronic acid (HA)-functionalized dual-stimuli responsive poly(N-isopropylacrylamide) (PNIPAM) microgels are used to study the specificity of breast cancer cell binding and to assess cell friendly release mechanisms for further diagnostic procedures. The microgels are established by straightforward precipitation polymerization with amine bearing comonomers and postfunctionalization with a UV-labile linker that covalently binds HA to the microgel network. Well-defined microgel coatings for cell binding are established via simple physisorption and annealing. The HA-presenting PNIPAM microgel films are shown to specifically adhere CD44 expressing breast cancer cell lines (MDA-MB-231 and MCF-7), where an increase in adhesion correlates with higher CD44 expression and HA functionalization. Upon cooling below the lower critical solution temperature of PNIPAM microgels, the cells could be released; however, 10-30% of the cells still remained on the surface even after prolonged cooling and mild mechanical agitation. A complete cell release is achieved after applying the light stimulus by short UV treatment cleaving HA units from the microgels. Owing to the comparatively straightforward preparation procedures, such dual-responsive microgel films could be considered for the effective capture, release, and diagnostics of tumor cells.
Collapse
Affiliation(s)
- Melanie Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Life Science Center, University Hospital and Medical Faculty, Heinrich-Heine University Duesseldorf, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Dimitri Wilms
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Life Science Center, University Hospital and Medical Faculty, Heinrich-Heine University Duesseldorf, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Hans J Neubauer
- Department of Obstetrics and Gynecology, Life Science Center, University Hospital and Medical Faculty, Heinrich-Heine University Duesseldorf, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|