1
|
Runfa L, Chen X, Hongliang C, Wei Y, Yuanfang Z, Siyu C, Wenrui J, Qi Z, Yi E, Meng J, Abdullah M, Tan L. Facile synthesis of Ni 3Se 4/Ni 0.6Zn 0.4O/ZnO nanoparticle as high-performance electrode materials for electrochemical energy storage device. NANOTECHNOLOGY 2023; 34:185401. [PMID: 36669193 DOI: 10.1088/1361-6528/acb4f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
To enhance the performance of transition metal chalcogenide composite electrode material, a key point is a composite design and preparation based on the synergistic effect between the oxide and selenide materials. With a facile 'one step template-annealing' step, Ni3Se4, Ni0.6Zn0.4O and ZnO are simultaneously synthesized, by 500 °C annealing. With the increase of annealing temperature from 350 °C to 600 °C, nickel selenides change from NiSe2to Ni3Se4to NiSe. The charge storage capacity increases first and then decreases with the increase of annealing temperature, and the 500 °C annealing obtained three compound composite Ni3Se4/Ni0.6Zn0.4O/ZnO (NNZ-500) nanoparticle material displayed a high specific capacitance of 1089.2 F g-1at 1 A g-1, and excellent cycle stability of 99.8% capacitance retention after 2000 cycles at 5 A g-1. Moreover, an asymmetric supercapacitor was assembled with NNZ-500 as the positive electrode material and activated carbon as the negative electrode material. This kind of asymmetric supercapacitor demonstrated a high energy density of 53.4 Wh kg-1at 819.0 W kg-1, and cycle stability with 98.6% capacitance retention after 2000 cycles. This material preparation approach provides great potential for the future development of high performance transition metal composite electrode materials in energy storage applications.
Collapse
Affiliation(s)
- Li Runfa
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cao Hongliang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yan Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Yuanfang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Siyu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Wenrui
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - E Yi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Meng
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Muhammad Abdullah
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liyi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
2
|
Shen D, Li M, Liu Y, Fu X, Yu H, Dong W, Yang S. Hollow nanotube arrays of nickle-cobalt metal sulfide for high energy density supercapacitors. RSC Adv 2023; 13:5557-5564. [PMID: 36798616 PMCID: PMC9926465 DOI: 10.1039/d2ra07624a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
High energy density is still difficult to achieve using existing metal sulfides because of their low specific capacitance. To improve capacitance, a series of nickel and cobalt metal sulfides with different Ni/Co ratios were synthesized by a two-step hydrothermal method. Using the combining method of experimental research and first-principles calculation, the morphology, structural stability, electronic structure and electrochemical properties of metal sulfides were investigated systematically. The results show that the morphology of metal sulfides gradually grows from two-dimensional structure to nanotube arrays, and finally to nanorod arrays, as the Ni/Co ratios decrease. Among them, the NC24 sample with the Ni/Co ratio of 1 : 2 is a hollow nanotube array composed of NiCo2S4, which shows excellent electrochemical performance. The specific capacity of the NC24 sample reaches 1527C g-1 at 1 A g-1, and the capacity retention is 93.81% at 10 A g-1 after 2000 cycles. Furthermore, a symmetrical supercapacitor assembled from the NiCo2S4 nanotube array shows a high energy density of 67.5 W h kg-1. This strategy develops a nanotube array of metal sulfides and expands its application in a high energy density supercapacitor.
Collapse
Affiliation(s)
- Ding Shen
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China
| | - MingYue Li
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China .,Institute of Engineering Technology and Natural Science, Belgorod State University Belgorod 308015 Belgorod Oblast Russia
| | - Yaohan Liu
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China
| | - Xiaofan Fu
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China
| | - Haoran Yu
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China
| | - Wei Dong
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China
| | - ShaoBin Yang
- College of Materials Science and Engineering, Liaoning Technical University Fuxin Liaoning 123000 China
| |
Collapse
|
3
|
Ding Y, Han T, Wu Z, Guan Y, Hu J, Hu C, Tian Y, Liu J. A Magnesium/Lithium Hybrid-Ion Battery with Modified All-Phenyl-Complex-Based Electrolyte Displaying Ultralong Cycle Life and Ultrahigh Energy Density. ACS NANO 2022; 16:15369-15381. [PMID: 36049053 DOI: 10.1021/acsnano.2c07174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnesium/lithium hybrid-ion batteries (MLHBs) combine the advantages of high safety and fast ionic kinetics, which enable them to be promising emerging energy-storage systems. Here, a high-performance MLHB using a modified all-phenyl complex with a lithium bis(trifluoromethanesulfonyl)imide electrolyte and a NiCo2S4 cathode on a copper current collector is developed. A reversible conversion involving a copper collector with NiCo2S4 efficiently avoids the electrolyte dissociation and diffusion difficulties of Mg2+ ions, enabling low polarization and fast redox, which is verified by X-ray absorption near edge structure analysis. Such combination affords the best MLHB among all those ever reported, with a reversible capacity of 204.7 mAh g-1 after 2600 cycles at 2.0 A g-1, and delivers an ultrahigh full electrode-basis energy density of 708 Wh kg-1. The developed MLHB also achieves good rate performance and temperature tolerance at -10 and 50 °C with a low electrolyte consumption. The hybrid-ion battery system presented here could inspire a broad set of engineering potentials for high-safety battery technologies and beyond.
Collapse
Affiliation(s)
- Yingyi Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yangchao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
4
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|