1
|
Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. Int J Mol Sci 2023; 24:14459. [PMID: 37833908 PMCID: PMC10572412 DOI: 10.3390/ijms241914459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This review analyzes the causes and consequences of apoptosis resulting from oxidative stress that occurs in mitochondria and cells exposed to the toxic effects of different-valence heavy metals (Ag+, Tl+, Hg2+, Cd2+, Pb2+, Al3+, Ga3+, In3+, As3+, Sb3+, Cr6+, and U6+). The problems of the relationship between the integration of these toxic metals into molecular mechanisms with the subsequent development of pathophysiological processes and the appearance of diseases caused by the accumulation of these metals in the body are also addressed in this review. Such apoptosis is characterized by a reduction in cell viability, the activation of caspase-3 and caspase-9, the expression of pro-apoptotic genes (Bax and Bcl-2), and the activation of protein kinases (ERK, JNK, p53, and p38) by mitogens. Moreover, the oxidative stress manifests as the mitochondrial permeability transition pore (MPTP) opening, mitochondrial swelling, an increase in the production of reactive oxygen species (ROS) and H2O2, lipid peroxidation, cytochrome c release, a decline in the inner mitochondrial membrane potential (ΔΨmito), a decrease in ATP synthesis, and reduced glutathione and oxygen consumption as well as cytoplasm and matrix calcium overload due to Ca2+ release from the endoplasmic reticulum (ER). The apoptosis and respiratory dysfunction induced by these metals are discussed regarding their interaction with cellular and mitochondrial thiol groups and Fe2+ metabolism disturbance. Similarities and differences in the toxic effects of Tl+ from those of other heavy metals under review are discussed. Similarities may be due to the increase in the cytoplasmic calcium concentration induced by Tl+ and these metals. One difference discussed is the failure to decrease Tl+ toxicity through metallothionein-dependent mechanisms. Another difference could be the decrease in reduced glutathione in the matrix due to the reversible oxidation of Tl+ to Tl3+ near the centers of ROS generation in the respiratory chain. The latter may explain why thallium toxicity to humans turned out to be higher than the toxicity of mercury, lead, cadmium, copper, and zinc.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
2
|
Wei M, Xiang Q, Wang P, Chen L, Ren M. Ambivalent effects of dissolved organic matter on silver nanoparticles/silver ions transformation: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130533. [PMID: 37055958 DOI: 10.1016/j.jhazmat.2022.130533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
The numerous applications of silver nanoparticles (AgNPs) lead to their spread in aquatic systems and the release of silver ions (Ag+), which brings potential risks to environment and human health. Owing to the different toxicity, the mutual transformations between AgNPs and Ag+ has been a hot topic of research. Dissolved organic matter (DOM) is ubiquitous on the earth and almost participates in all the reactions in the nature. The previous studies have reported the roles of DOM played in the transformation between AgNPs and Ag+. However, different experiment conditions commonly caused contradictory results, leading to the difficulty to predict the fate of AgNPs in specific reactions. Here we summarized mechanisms of DOM-mediated AgNPs oxidation and Ag+ reduction, and analyzed the effects of environmental parameters. Moreover, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This review will promote the understanding of the fate and risk assessments of AgNPs in natural water systems.
Collapse
Affiliation(s)
- Minxiang Wei
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Qianqian Xiang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, PR China
| | - Peng Wang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China
| | - Liqiang Chen
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China.
| | - Meijie Ren
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
3
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
5
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Barbinta-Patrascu ME, Gorshkova Y, Ungureanu C, Badea N, Bokuchava G, Lazea-Stoyanova A, Bacalum M, Zhigunov A, Petrovic S. Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4726. [PMID: 34443248 PMCID: PMC8401137 DOI: 10.3390/ma14164726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The phyto-development of nanomaterials is one of the main challenges for scientists today, as it offers unusual properties and multifunctionality. The originality of our paper lies in the study of new materials based on biomimicking lipid bilayers loaded with chlorophyll, chitosan, and turmeric-generated nano-silver/silver chloride particles. These materials showed a good free radical scavenging capacity between 76.25 and 93.26% (in vitro tested through chemiluminescence method) and a good antimicrobial activity against Enterococcus faecalis bacterium (IZ > 10 mm). The anticancer activity of our developed bio-based materials was investigated against two cancer cell lines (human colorectal adenocarcinoma cells HT-29, and human liver carcinoma cells HepG2) and compared to one healthy cell line (human fibroblast BJ cell line). Cell viability was evaluated for all prepared materials after a 24 h treatment and was used to select the biohybrid with the highest therapeutic index (TI); additionally, the hemolytic activity of the samples was also evaluated. Finally, we investigated the morphological changes induced by the developed materials against the cell lines studied. Biophysical studies on these materials were done by correlating UV-Vis and FTIR absorption spectroscopy, with XRD, SANS, and SAXS methods, and with information provided by microscopic techniques (AFM, SEM/EDS). In conclusion, these "green" developed hybrid systems are an important alternative in cancer treatment, and against health problems associated with drug-resistant infections.
Collapse
Affiliation(s)
- Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Bucharest-Măgurele, Romania;
| | - Yulia Gorshkova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie, 6 Dubna, 141980 Moscow, Russia;
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Street, 420008 Kazan, Russia
| | - Camelia Ungureanu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania;
| | - Nicoleta Badea
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania;
| | - Gizo Bokuchava
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie, 6 Dubna, 141980 Moscow, Russia;
| | - Andrada Lazea-Stoyanova
- Low Temperature Plasma Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Ilfov, Romania;
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute of Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic;
| | - Sanja Petrovic
- Department of Chemical Technology, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| |
Collapse
|