Cong X, Yin H, Zheng Y, He W. Recent progress of group III-V materials-based nanostructures for photodetection.
NANOTECHNOLOGY 2024;
35:382002. [PMID:
38759630 DOI:
10.1088/1361-6528/ad4cf0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Due to the suitable bandgap structure, efficient conversion rates of photon to electron, adjustable optical bandgap, high electron mobility/aspect ratio, low defects, and outstanding optical and electrical properties for device design, III-V semiconductors have shown excellent properties for optoelectronic applications, including photodiodes, photodetectors, solar cells, photocatalysis, etc. In particular, III-V nanostructures have attracted considerable interest as a promising photodetector platform, where high-performance photodetectors can be achieved based on the geometry-related light absorption and carrier transport properties of III-V materials. However, the detection ranges from Ultraviolet to Terahertz including broadband photodetectors of III-V semiconductors still have not been more broadly development despite significant efforts to obtain the high performance of III-V semiconductors. Therefore, the recent development of III-V photodetectors in a broad detection range from Ultraviolet to Terahertz, and future requirements are highly desired. In this review, the recent development of photodetectors based on III-V semiconductor with different detection range is discussed. First, the bandgap of III-V materials and synthesis methods of III-V nanostructures are explored, subsequently, the detection mechanism and key figures-of-merit for the photodetectors are introduced, and then the device performance and emerging applications of photodetectors are provided. Lastly, the challenges and future research directions of III-V materials for photodetectors are presented.
Collapse