1
|
Hefny MM, Elmezayyen AS, Tawfik AM. Anomalous kinetic study of atenolol release from ATN@DNA a core-shell like structure. Sci Rep 2023; 13:3120. [PMID: 36813844 PMCID: PMC9947108 DOI: 10.1038/s41598-023-29774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The need for more efficient drug delivery strategies with ultraprecision and control over the release of drugs has led to the growth of more sophisticated drug-releasing systems as a promising alternative to conventional clinical therapies. This new seed of strategies has explored an encouraging property to overcome the inherent problems of traditional therapies. One of the major challenges for any drug delivery system is the introduction of a complete view of the delivery system. In this article, we intend to elucidate the theoretical proof of concept of the electrosynthesis ATN@DNA core-shell like structure as a model system. Therefore, we present a fractal kinetic model (non-exponential model) taking into consideration the concept of time-dependent diffusion coefficient, which was developed using a numerical method with the help of COMSOL Multiphysics. In addition to that, we present here a general fractional kinetic model in sense of the tempered fractional operator, which leads to better characterized memory properties of the release process. Also, the fractional model is compared with the fractal kinetic model and both offer a good description of drug release processes that present anomalous kinetics. The solutions of the fractal and fractional kinetic models are also fitted successfully with our real-release results.
Collapse
Affiliation(s)
- Mohamed Mokhtar Hefny
- grid.440865.b0000 0004 0377 3762Engineering Mathematics and Physics Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, 11835 Egypt
| | - Ayman S. Elmezayyen
- grid.10251.370000000103426662Biological Advanced Materials Laboratory, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt ,grid.10251.370000000103426662Physics Department, Faculty of Basic Science, New Mansoura University, New Mansoura, Egypt
| | - Ashraf M. Tawfik
- grid.10251.370000000103426662Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
2
|
Li J, Qi J, Tang Y, Liu H, Zhou K, Dai Z, Yuan L, Sun C. A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis. J Nanobiotechnology 2021; 19:363. [PMID: 34789275 PMCID: PMC8596892 DOI: 10.1186/s12951-021-01108-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022] Open
Abstract
Our study aimed to explore the function of circRNA_0001805 in the pathogenesis of NAFLD and the underlying mechanism. A nanodrug system (GA-RM/GZ/PL) was constructed to overexpress circRNA_0001805 specifically in hepatocytes for the treatment of NAFLD. Fat droplet accumulation in cultured cells and mouse hepatic tissues was detected using Oil Red O or H&E staining. The relative expression of circRNAs, genes associated with lipogenesis was quantified by qRT-PCR. Interactions between circRNA_0001805 and miR-106a-5p/miR-320a, between miR-106a-5p/miR-320a and ABCA1/CPT1 were confirmed by dual-luciferase reporter assay. A novel metalorganic framework nanocarrier (GZ) was prepared from glycyrrhizic acid and zinc ions (Zn2+), and this nanocarrier was loaded with the circRNA_0001805 plasmid to construct a nanocore (GZ/PL). Then, this GZ/PL was coated with a galactose-modified RBC membrane (GA-RM) to generate GA-RM/GZ/PL. CircRNA_0001805 expression was downregulated in FFA-challenged primary hepatocytes, HFD-fed mice and NAFLD patients. Overexpressed circRNA_0001805 attenuated NAFLD development by suppressing lipid metabolism disorder and inflammation. CircRNA_0001805 targeted miR-106a-5p/miR-320a, which served as an upstream inhibitor of ABCA1/CPT1 and collaboratively regulated NAFLD progression. GA-RM/GZ/PL targeted hepatocytes, overexpressed circRNA_0001805, released glycyrrhizic acid to reduce the accumulation of lipids in the liver and played a synergistic role against NAFLD-induced lipid metabolism disorder. ![]()
Collapse
Affiliation(s)
- Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jing Qi
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yishu Tang
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Huaizheng Liu
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Kefu Zhou
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zheren Dai
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Lehong Yuan
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Chuanzheng Sun
- Department of Emergency, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|