1
|
Zhang H, Wen N, Gong X, Li X. Application of triboelectric nanogenerator (TENG) in cancer prevention and adjuvant therapy. Colloids Surf B Biointerfaces 2024; 242:114078. [PMID: 39018914 DOI: 10.1016/j.colsurfb.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Cancer is a malignant tumor that kills about 940,000 people worldwide each year. In addition, about 30-77 % of cancer patients will experience cancer metastasis and recurrence, which can increase the cancer mortality rate without prompt treatment. According to the US Food and Drug Administration, wearable devices can detect several physiological indicators of patients to reflect their health status and adjuvant cancer treatment. Based on the triboelectric effect and electrostatic induction phenomenon, triboelectric nanopower generation (TENG) technology can convert mechanical energy into electricity and drive small electronic devices. This article reviewed the research status of TENG in the areas of cancer prevention and adjuvant therapy. TENG can be used for cancer prevention with advanced sensors. At the same time, electrical stimulation generated by TENG can also be used to help inhibit the growth of cancer cells to reduce the proliferation, recurrence, and metastasis of cancer cells. This review will promote the practical application of TENG in healthcare and provide clean and sustainable energy solutions for wearable bioelectronic systems.
Collapse
Affiliation(s)
- Haohao Zhang
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Ning Wen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoran Gong
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Xue Li
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China.
| |
Collapse
|
2
|
Li Y, Ma G, Li Y, Fu J, Wang M, Gong K, Li W, Wang X, Zhu L, Dong J. Droplet Energy Harvesting System Based on Total-Current Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27339-27351. [PMID: 38749766 DOI: 10.1021/acsami.4c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The droplet-based nanogenerator (DNG) is a highly promising technology for harvesting high-entropy water energy in the era of the Internet of Things. Yet, despite the exciting progress made in recent years, challenges have emerged unexpectedly for the AC-type DNG-based energy system as it transitions from laboratory demonstrations to real-world applications. In this work, we propose a high-performance DNG system based on the total-current nanogenerator concept to address these challenges. This system utilizes the water-charge-shuttle architecture for easy scale-up, employs the field effect to boost charge density of the triboelectric layer, adopts an on-solar-panel design to improve compatibility with solar energy, and is equipped with a novel DC-DC buck converter as power management circuit. These features allow the proposed system to overcome the existing bottlenecks of DNG and empower the system with superior performances compared with previous ones. Notably, with the core architecture measuring only 15 cm × 12.5 cm × 0.3 cm in physical dimensions, this system reaches a record-high open-circuit voltage of 4200 V, capable of illuminating 1440 LEDs, and can charge a 4.7 mF capacitor to 4.5 V in less than 24 min. In addition, the practical potential of the proposed DNG system is further demonstrated through a self-powered, smart greenhouse application scenario. These demonstrations include the continuous operation of a thermohygrometer, the operation of a Bluetooth plant monitor, and the all-weather energy harvesting capability. This work will provide valuable inspiration and guidance for the systematic design of next-generation DNG to unlock the sustainable potential of distributed water energy for real-world applications.
Collapse
Affiliation(s)
- Yuanhang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jie Fu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Meishan Wang
- School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Kuiliang Gong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lili Zhu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Jun Dong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- School of Integrated Circuits, Ludong University, Yantai 264025, China
| |
Collapse
|
3
|
Wei S, Chen T, Hou H, Xu Y. Recent Advances in Electrochemical Sterilization. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Zhang Z, Gu G, Gu G, Cheng G, Du Z. Power management strategy for unidirectional current pulsed triboelectric nanogenerator. NANOTECHNOLOGY 2022; 33:465401. [PMID: 35947935 DOI: 10.1088/1361-6528/ac8882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Power management circuit (PMC) can efficiently store the output energy of pulsed triboelectric nanogenerator (Pulsed-TENG). Unidirectional current Pulsed-TENG (UP-TENG) has the advantage of without using rectifier bridge. However, the energy storage efficiency is limited for large capacitors at low capacitor voltage (<10 V). To solve this problem, PMC is optimized here. Firstly, rectifier diode is used to reduce the energy loss. Energy storage efficiency of PMC using rectifier diode (D-PMC) is higher than that of conventional PMC. Then, appropriate inductor is used to further form the optimized PMC (O-PMC), which reduces the energy loss of inductor. Results show that O-PMC using 100μH inductor has the highest energy storage efficiency. The actual test energy storage efficiency of O-PMC is 30.6%, which 3.4 times higher than that of D-PMC. Finally, an external capacitor is connected to electrodes of UP-TENG to form the EUP-TENG, which improves charging speed and output voltage of O-PMC. O-PMC using EUP-TENG can stably power calculator at low motion frequencies. O-PMC can be widely used in self-powered systems.
Collapse
Affiliation(s)
- Zhihao Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Guangqin Gu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Guangxiang Gu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zuliang Du
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| |
Collapse
|
5
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
6
|
Wang Y, Zhao X, Liu Y, Zhou W. The effect of metal surface nanomorphology on the output performance of a TENG. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:298-312. [PMID: 35371899 PMCID: PMC8941318 DOI: 10.3762/bjnano.13.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this work, the effect of charge density and nanomorphology of a metal tip on the output performance of a triboelectric nanogenerator (TENG) is studied. The basic working principle of the TENG is charge transfer after separation of a metal and a polymer. There are different charge densities on different kinds of metal surface nanomorphology, which significantly influences the output performance of the TENG. Copper samples with different nanomorphology were obtained by controlling pH value, current density, electrolyte concentration, and temperature during the electrodeposition of copper. The samples were characterized using XRD and SEM. The output performance of the TENG is closely related to the size, charge density distribution, and shape of the metal nanoparticles.
Collapse
Affiliation(s)
- Yiru Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610100, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, PR China
| | - Xin Zhao
- School of Mechanical Engineering, Chengdu University, Chengdu 610100, China
| | - Yang Liu
- Officers College of PAP, Chengdu, 610213, China
| | - Wenjun Zhou
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| |
Collapse
|