1
|
Abdullah M, Younis M, Sohail MT, Wu S, Zhang X, Khan K, Asif M, Yan P. Recent Progress of 2D Materials-Based Photodetectors from UV to THz Waves: Principles, Materials, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402668. [PMID: 39235584 DOI: 10.1002/smll.202402668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.
Collapse
Affiliation(s)
- Muhammad Abdullah
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Younis
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Tahir Sohail
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shifang Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Asif
- THz Technical Research Center of Shenzhen University, Shenzhen Key Laboratory of Micro-nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peiguang Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Ma S, Li G, Li Z, Wang T, Zhang Y, Li N, Chen H, Zhang N, Liu W, Huang Y. Negative Photoconductivity of Fe 3GeTe 2 Crystal with Native Heterostructure for Ultraviolet to Terahertz Ultra-Broadband Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305709. [PMID: 38207342 DOI: 10.1002/adma.202305709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/10/2023] [Indexed: 01/13/2024]
Abstract
Gaining insight into the photoelectric behavior of ferromagnetic materials is significant for comprehensively grasping their intrinsic properties and broadening future application fields. Here, through a specially designed Fe3GeTe2/O-Fe3GeTe2 heterostructure, first, the broad-spectrum negative photoconductivity phenomenon of ferromagnetic nodal line semimetal Fe3GeTe2 is reported that covers UV-vis-infrared-terahertz bands (355 nm to 3000 µm), promising to compensate for the inadequacies of traditional optoelectronic devices. The significant suppression of photoexcitation conductivity is revealed to arise from the semimetal/oxidation (sMO) interface-assisted dual-response mechanism, in which the electron excitation origins from the semiconductor photoconductivity effect in high-energy photon region, and semimetal topological band-transition in low-energy photon region. High responsivities ranging from 103 to 100 mA W-1 are acquired within ultraviolet-terahertz bands under ±0.1 V bias voltage at room temperature. Notably, the responsivity of 2.572 A W-1 at 3000 µm (0.1 THz) and the low noise equivalent power of 26 pW Hz-1/2 surpass most state-of-the-art mainstream terahertz detectors. This research provides a new perspective for revealing the photoelectric conversion properties of Fe3GeTe2 crystal and paves the way for the development of spin-optoelectronic devices.
Collapse
Affiliation(s)
- Suping Ma
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Guanghao Li
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zhuo Li
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tingyuan Wang
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Yawen Zhang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Ningning Li
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Haisheng Chen
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Weiwei Liu
- Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Huang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Zhang X, Liu X, Zhang C, Peng S, Zhou H, He L, Gou J, Wang X, Wang J. Epitaxial Topological Insulator Bi 2Te 3 for Fast Visible to Mid-Infrared Heterojunction Photodetector by Graphene As Charge Collection Medium. ACS NANO 2022; 16:4851-4860. [PMID: 35274530 DOI: 10.1021/acsnano.2c00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three dimensional topological insulators have a thriving application prospect in broadband photodetectors due to the possessed topological quantum states. Herein, a large area and uniform topological insulator bismuth telluride (Bi2Te3) layer with high crystalline quality is directly epitaxial grown on GaAs(111)B wafer using a molecular beam epitaxy process, ensuring efficient out-of-plane carriers transportation due to reduced interface defects influence. By tiling monolayer graphene (Gr) on the as-prepared Bi2Te3 layer, a Gr/Bi2Te3/GaAs heterojunction array prototype was further fabricated, and our photodetector array exhibited the capability of sensing ultrabroad photodetection wavebands from visible (405 nm) to mid-infrared (4.5 μm) with a high specific detectivity (D*) up to 1012 Jones and a fast response speed at about microseconds at room temperature. The enhanced device performance can be attributed to enhanced light-matter interaction at the high-quality heterointerface of Bi2Te3/GaAs and improved carrier collection efficiency through graphene as a charge collection medium, indicating an application prospect of topological insulator Bi2Te3 for fast-speed broadband photodetection up to a mid-infrared waveband. This work demonstrated the potential of integrated topological quantum materials with a conventional functional substrate to fabricate the next generation of broadband photodetection devices for uncooled focal plane array or infrared communication systems in future.
Collapse
Affiliation(s)
- Xingchao Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianchao Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chaoyi Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Silu Peng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongxi Zhou
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liang He
- National Laboratory of Solid-state Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Gou
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinran Wang
- National Laboratory of Solid-state Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|