1
|
Zhang R, Yan Z, Gao M, Zheng B, Yue B, Qiu M. Recent advances in two-dimensional materials for drug delivery. J Mater Chem B 2024; 12:12437-12469. [PMID: 39533870 DOI: 10.1039/d4tb01787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two-dimensional (2D) materials exhibit significant potential in biomedical applications, particularly as drug carriers. Thus, 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, transition metal carbides/nitrides, and hexagonal boron nitride, have been extensively studied. Their large specific surface area, abundant surface active sites, and excellent biocompatibility and biodegradability make them ideal platforms for drug loading and delivery. By optimizing the physicochemical properties and methods for the surface modification of 2D materials, improved drug release mechanisms and enhanced combination therapy effects can be achieved, providing a reliable foundation for efficient cancer treatment. This review provides a comprehensive analysis of the recent advances in the utilization of 2D materials for drug delivery. It systematically categorizes and summarizes the preparation methodologies, surface modification strategies, application domains, primary advantages and potential drawbacks of various 2D materials in the biomedical field. Furthermore, it provides an extensive overview of current challenges in this field and outlines potential future research directions for 2D materials in drug delivery based on existing issues.
Collapse
Affiliation(s)
- Ranran Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Zichao Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518060, P. R. China
| |
Collapse
|
2
|
Qi W, Zhang R, Wang Z, Du H, Zhao Y, Shi B, Wang Y, Wang X, Wang P. Advances in the Application of Black Phosphorus-Based Composite Biomedical Materials in the Field of Tissue Engineering. Pharmaceuticals (Basel) 2024; 17:242. [PMID: 38399457 PMCID: PMC10892510 DOI: 10.3390/ph17020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.
Collapse
Affiliation(s)
- Wanying Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Ru Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Zaishang Wang
- School of Pharmacy, Guilin Medical University, Guilin 541001, China;
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Yiwu Zhao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Bin Shi
- Shandong Medicinal Biotechnology Center, Jinan 250062, China;
| | - Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| |
Collapse
|
3
|
Ma T, Zhou J, Wei D, Peng H, Liu X, Guo W, Zhang C, Liu X, Li S, Deng Y. Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite. BIOSENSORS 2023; 13:735. [PMID: 37504133 PMCID: PMC10377050 DOI: 10.3390/bios13070735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
A highly sensitive unlabeled electrochemical aptasensor based on hydroxylated black phosphorus/poly-L-lysine (hBP/PLL) composite is introduced herein for the detection of malathion. Poly-L-lysine (PLL) with adhesion and coating properties adhere to the surface of the nanosheets by noncovalent interactions with underlying hydroxylated black phosphorus nanosheets (hBP) to produce the hBP/PLL composite. The as-synthesized hBP/PLL composite bonded to Au nanoparticles (Au NPs) firmly by assembling and using them as a substrate for the aptamer with high specificity as a probe to fabricate the sensor. Under optimal conditions, the linear range of the electrochemical aptasensor was 0.1 pM~1 μM, and the detection limit was 2.805 fM. The electrochemical aptasensor has great selectivity, a low detection limit, and anti-interference, which has potential application prospects in the field of rapid trace detection of pesticide residues.
Collapse
Affiliation(s)
- Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| | - Dan Wei
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongquan Peng
- Department of Nephrology, Kiang Wu Hospital, Macau SAR, China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| |
Collapse
|
4
|
Jing X, Xiong Z, Lin Z, Sun T. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14122634. [PMID: 36559127 PMCID: PMC9787998 DOI: 10.3390/pharmaceutics14122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal-organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zian Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|