1
|
Han NT, Dien VK, Chang TR, Lin MF. Theoretical investigations of the electronic and optical properties of a GaGeTe monolayer. RSC Adv 2023; 13:19464-19476. [PMID: 37383693 PMCID: PMC10294289 DOI: 10.1039/d3ra03160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Our study focused on exploring the electronic and optical characteristics of the GaGeTe monolayer using first-principles calculations. Our findings showed that this material has remarkable physical and chemical properties attributed to its unique band structure, van Hove singularities in the density of states (DOS), charge density distributions, and charge density differences. We also observed excitonic effects, multiple optical excitation peaks, and strong plasmon modes in the energy loss functions, absorption coefficients, and reflectance spectra, which contribute to its enriched optical response. Moreover, we were able to establish a close relationship between the orbital hybridizations of the initial and final states with each optical excitation peak. Our results suggest that GaGeTe monolayers hold great potential for various semiconductor applications, especially those involving optics. Furthermore, the theoretical framework we used can be applied to study the electronic and optical properties of other graphene-like semiconductor materials.
Collapse
Affiliation(s)
- Nguyen Thi Han
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
| | - Vo Khuong Dien
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
| | - Tay-Rong Chang
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort) Tainan 70101 Taiwan
- Physics Division, National Center for Theoretical Sciences Taipei 10617 Taiwan
| | - Ming-Fa Lin
- Department of Physics, National Cheng Kung University 1 University Road Tainan 70101 Taiwan
- Hierarchical Green-Energy Material (Hi-GEM) Research Center, National Cheng Kung University Taiwan
| |
Collapse
|
2
|
Vibrationally-resolved absorption and fluorescence spectra of chemically modified 2D hexagonal boron nitride quantum dots. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Wang Z, Wang P, Mao Q, Tian W, Xu Y, Li X, Wang L, Wang H. Urchin-like PdOs nanostructure for hydrogen evolution electrocatalysis. NANOTECHNOLOGY 2022; 33:325401. [PMID: 35504246 DOI: 10.1088/1361-6528/ac6c36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
The compositional and structural engineering of advanced nanomaterials for hydrogen evolution reaction (HER) is highly necessary for efficient hydrogen production. Herein, PdOs nanospine assemblies (PdOs NAs) with urchin-like structures are fabricated via one-step route using DM-970 and KBr as surfactant agent and capping agent, respectively. Benefiting from electronic effect and multi-branched structure, the PdOs NAs exhibit superior performance for HER in alkaline and neutral solutions, requiring overpotentials of 28 and 35 mV at -10 mA cm-2, respectively, as well as superior long-term stability. This study offers a universal approach for the fabrication of active Pd-based catalysts with multi-branched morphology for efficient water electrolysis and beyond.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Peng Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wenjing Tian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Chen Z, Sui X, Li Y, Liu X, Zhang Y. Ti 3AlC 2 MAX and Ti 3C 2 MXene Quantum Sheets for Record-High Optical Nonlinearity. J Phys Chem Lett 2022; 13:3929-3936. [PMID: 35475608 DOI: 10.1021/acs.jpclett.2c00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) transition-metal carbides (MXenes) have attracted great interest owing to their unique structures and superior properties compared to those of traditional 2D materials. The transformation of 2D MXenes into sub-5-nm quantum sheets (QSs) is urgently required but rarely reported. Herein, the Ti3AlC2 MAX and Ti3C2 MXene QSs with monolayer structures and sub-5-nm lateral sizes are demonstrated. Exceptionally high yields (>15 wt %) are obtained through an all-physical top-down method. The QS dispersions present unique photoluminescence, and the QSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate remarkable nonlinear saturation absorption (NSA). Absolute modulation depths of 30.6 and 49.9% and saturation intensities of 1.16 and 1.25 MW cm-2 (i.e., 116 and 125 nJ cm-2) are achieved for Ti3AlC2 QSs and Ti3C2 QSs, respectively. Such record-high NSA performances of MXene QSs would boost the application of MAX/MXene materials in nonlinear optics.
Collapse
Affiliation(s)
- Zhexue Chen
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyu Sui
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueqi Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinfeng Liu
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Zhang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|