Garner MH, Koerstz M, Jensen JH, Solomon GC. Substituent Control of σ-Interference Effects in the Transmission of Saturated Molecules.
ACS PHYSICAL CHEMISTRY AU 2022;
2:282-288. [PMID:
36855417 PMCID:
PMC9955259 DOI:
10.1021/acsphyschemau.2c00016]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The single-molecule conductance of saturated molecules can potentially be fully suppressed by destructive quantum interference in their σ-system. However, only few molecules with σ-interference have been identified, and the structure-property relationship remains to be elucidated. Here, we explore the role of substituents in modulating the electronic transmission of saturated molecules. In functionalized bicyclo[2.2.2]octanes, the transmission is suppressed by σ-interference when fluorine substituents are applied. For bicyclo[2.2.2]octasilane and -octagermanes, the transmission is suppressed when carbon-based substituents are used, and such molecules are likely to be highly insulating. For the carbon-based substituents, we find a strong correlation between the appropriate Hammett constants and the transmission. The substituent effect enables systematic optimization of the insulating properties of saturated molecular cores.
Collapse