1
|
Modaresi S, Pacelli S, Chakraborty A, Coyle A, Luo W, Singh I, Paul A. Engineering a Microfluidic Platform to Cryopreserve Stem Cells: A DMSO-Free Sustainable Approach. Adv Healthc Mater 2024; 13:e2401264. [PMID: 39152923 PMCID: PMC11582517 DOI: 10.1002/adhm.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Human adipose-derived stem cells (hASCs) are cryopreserved traditionally using dimethyl sulfoxide (DMSO) as the cryoprotectant agent. DMSO penetrates cell membranes and prevents cellular damage during cryopreservation. However, DMSO is not inert to cells, inducing cytotoxic effects by causing mitochondrial dysfunction, reduced cell proliferation, and impaired hASCs transplantation. Additionally, large-scale production of DMSO and contamination can adversely impact the environment. A sustainable, green alternative to DMSO is trehalose, a natural disaccharide cryoprotectant agent that does not pose any risk of cytotoxicity. However, the cellular permeability of trehalose is less compared to DMSO. Here, a microfluidic chip is developed for the intracellular delivery of trehalose in hASCs. The chip is designed for mechanoporation, which creates transient pores in cell membranes by mechanical deformation. Mechanoporation allows the sparingly permeable trehalose to be internalized within the cell cytosol. The amount of trehalose delivered intracellularly is quantified and optimized based on cellular compatibility and functionality. Furthermore, whole-transcriptome sequencing confirms that less than 1% of all target genes display at least a twofold change in expression when cells are passed through the chip compared to untreated cells. Overall, the results confirm the feasibility and effectiveness of using this microfluidic chip for DMSO-free cryopreservation of hASCs.
Collapse
Affiliation(s)
- Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, The University of Kansas, Lawrence, KS, 66045, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77840, USA
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemistry, The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
2
|
Hashim PK, Abdrabou SSMA. Sub-100 nm carriers by template polymerization for drug delivery applications. NANOSCALE HORIZONS 2024; 9:693-707. [PMID: 38497369 DOI: 10.1039/d3nh00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Size-controlled drug delivery systems (DDSs) have gained significant attention in the field of pharmaceutical sciences due to their potential to enhance drug efficacy, minimize side effects, and improve patient compliance. This review provides a concise overview of the preparation method, advancements, and applications of size-controlled drug delivery systems focusing on the sub-100 nm size DDSs. The importance of tailoring the size for achieving therapeutic goals is briefly mentioned. We highlight the concept of "template polymerization", a well-established method in covalent polymerization that offers precise control over molecular weight. We demonstrate the utility of this approach in crafting a monolayer of a polymer around biomolecule templates such as DNA, RNA, and protein, achieving the generation of DDSs with sizes ranging from several tens of nanometers. A few representative examples of small-size DDSs that share a conceptual similarity to "template polymerization" are also discussed. This review concludes by briefly discussing the drug release behaviors and the future prospects of "template polymerization" for the development of innovative size-controlled drug delivery systems, which promise to optimize drug delivery precision, efficacy, and safety.
Collapse
Affiliation(s)
- P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | | |
Collapse
|
3
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. PDMS nanoparticles-decorated PDMS substrate promotes adhesion, proliferation and differentiation of skin cells. J Colloid Interface Sci 2024; 659:629-638. [PMID: 38198940 DOI: 10.1016/j.jcis.2023.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Polydimethylsiloxane (PDMS) is known to be a common substrate for various cell culture-based applications. However, native PDMS is not very conducive for cell culture and hence, surface modification via cell adhesion moieties is generally needed to make it suitable especially for long-term cell culture. To address this issue, we propose to coat PDMS nanoparticles (NPs) on the surface of PDMS film to improve adhesion, proliferation and differentiation of skin cells. The proposed modification strategy introduces necessary nanotopography without altering the surface chemical properties of PDMS. Due to resemblance in the mechanical properties of PDMS with skin, PDMS NPs can recreate the native extracellular nanoenvironment of skin on the PDMS surface and provide anchoring sites for skin cells to adhere and grow. Human keratinocytes, representing 95% of the epidermal skin cells maintained their characteristic well-spread morphology with the formation of interconnected cell-sheets on this coated PDMS surface. Moreover, our in vitro immunofluorescence studies confirmed expression of distinctive epidermal protein markers on the coated surface indicating close resemblance with the native skin epidermis. Conclusively, our findings suggest that introducing nanotopography via PDMS NPs can be an effective strategy for emulating the native cellular functions of keratinocytes on PDMS based cell culture devices.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India; Material Science Programme, Thematic Unit of Excellence on Soft Nanofabrication, Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|