1
|
Orasugh J, Temane LT, Kesavan Pillai S, Ray SS. Advancements in Antimicrobial Textiles: Fabrication, Mechanisms of Action, and Applications. ACS OMEGA 2025; 10:12772-12816. [PMID: 40224409 PMCID: PMC11983210 DOI: 10.1021/acsomega.4c11356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025]
Abstract
Within the past decade, much attention has been drawn to antimicrobial textiles due to their vast potential for reducing the spread of infectious diseases and improving hygiene standards in various environments. This review paper discusses recent studies on preparation methods, modes of action, effectiveness against different microorganisms, and applications of antimicrobial textiles in diverse industries. It examines further challenges, including durability, environmental impact, and regulatory considerations, and looks at prospects for developing and integrating these novel materials. This paper intends to provide a broad-based understanding of state-of-the-art technologies and emerging trends in antimicrobial textiles by integrating existing knowledge and highlighting recent advances in this field that contribute much to improved public health and safety.
Collapse
Affiliation(s)
- Jonathan
Tersur Orasugh
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Lesego Tabea Temane
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Sreejarani Kesavan Pillai
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Lu TC, Xiao WB, Tian HY, Qiu QZ, Zhu YT, Chen ZH, Li X, Chen YZ, Lei Y, Liu AL. Rapid Bacterial/Viral Infections Typing Strategy Using a Portable Dual-Channel Electrochemical Biosensor Based on One-Step Assembly of Immunomagnetic Beads. Anal Chem 2025; 97:5953-5964. [PMID: 40068971 DOI: 10.1021/acs.analchem.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Amidst multiple epidemics, a rapid, sensitive, economical, and portable infection diagnosis strategy is crucial for primary medical care, particularly through the analysis of pathogen sources to determine appropriate antibiotic use. C-reactive protein (CRP) and serum amyloid A (SAA) are host-related biomarkers, and their combined detection can effectively distinguish between bacterial and viral infections, which holds great significance for the diagnosis of unknown pathogens. In this work, a portable dual-channel electrochemical biosensor based on a one-step assembly of immunomagnetic beads was proposed for the on-site combined detection of plasma CRP and SAA, which streamlined the operation and shortened the minimum detection time to less than 3 min. The biosensor exhibited excellent linearity in the detection of 3.125-1250 ng/mL CRP and 31.25-1250 ng/mL SAA, with detection limits of 0.91 and 12 ng/mL, respectively, falling within the clinically relevant reference range. Through simulated sample tests, the biosensor effectively distinguished between bacterial infection, viral infection, and healthy plasma samples. The actual sample tests demonstrated a high correlation and comparable medical value to enzyme-linked immunosorbent assay. Overall, this proposed strategy showed potential to aid in infection diagnosis and enable rapid combined detection of multiple biomarkers.
Collapse
Affiliation(s)
- Tai-Cheng Lu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wen-Biao Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hui-Yun Tian
- Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Qing-Zhen Qiu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu-Ting Zhu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhen-Hua Chen
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xin Li
- Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
3
|
Kini V, C S S, Mondal D, Sundarabal N, Nag P, Sadani K. Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2210-2237. [PMID: 39808260 PMCID: PMC11802654 DOI: 10.1007/s11356-024-35852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs. The co-existence of bacteria and CIP in such aqueous pools has promoted fluoroquinolone resistance in bacteria and should be minimized. The worldwide accepted standard detection methodologies for the detection of CIP are high-performance liquid chromatography and mass spectrometry, which are lab-based, require state-of-the-art equipment, and are expensive. Hence, it is difficult to integrate them for on-site monitoring. Further, the current remediation technologies like conventional sludge-treatment techniques fail to remove antibiotics such as CIP. Several point-of-use technologies for the detection of CIP are being investigated. These typically involve the development of electrochemical sensors where substrates, modifiers, biorecognition elements, and their chemistries are designed and optimized to enable robust, point-of-use detection of CIP. Similarly, remediation techniques like adsorption, membrane filtration, ion exchange, photocatalysis, ozonation, oxidation by Fenton's reagent, and bioremediation are explored, but their onsite use is limited. The use of these sensing and remediation technologies in tandem is possibly the only way the issues related to antimicrobial resistance may be effectively tackled. This article provides a focused critical review on the recent advances in the development of such technologies, laying out the prospects and perspectives of their synergistic use to curb the menace of AMR and preserve antibiotics.
Collapse
Affiliation(s)
- Vrinda Kini
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sreelakshmi C S
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasmita Mondal
- Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Nethaji Sundarabal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Kapil Sadani
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|