Devi M, Singh S, Tiwari S. CT Image Reconstruction using NLMfuzzyCD Regularization Method.
Curr Med Imaging 2021;
17:1103-1113. [PMID:
33438549 DOI:
10.2174/1573405617999210112195819]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
Aims and scope: Computed Tomography (CT) is one of the most efficient clinical diagnostic tools. The main goal of CT is to reproduce an acceptable reconstructed image of an object (either anatomical or functional behaviour) with the help of a limited set of its projections at different angles.
BACKGROUND
To achieve this goal, one of the most commonly iterative reconstruction algorithm called Maximum Likelihood Expectation Maximization (MLEM) is used.
OBJECTIVE
Although the conventional Maximum Likelihood (ML) algorithm can achieve quality images in CT. However, it still suffers from the optimal smoothing as the number of iterations increase.
METHODS
For solving this problem, in this paper present a novel statistical image reconstruction algorithm for CT, which utilizes a nonlocal means fuzzy complex diffusion as a regularization term for noise reduction and edge preservation.
RESULTS
The proposed model was evaluated on four test cases phantoms.
CONCLUSION
Qualitative and quantitative analyses indicate that the proposed technique has higher efficiency for computed tomography. The proposed method yields significant improvements when compare with the state-of-the-art techniques.
Collapse