1
|
Song Z, Li T, Zuo L, Song Y, Wei R, Dai J. A grayscale compression method to segment bone structures for 2D-3D registration of setup images in non-coplanar radiotherapy. Biomed Phys Eng Express 2024; 10:035014. [PMID: 38442730 DOI: 10.1088/2057-1976/ad3050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Purpose. To evaluate the performance of an automated 2D-3D bone registration algorithm incorporating a grayscale compression method for quantifying patient position errors in non-coplanar radiotherapy.Methods. An automated 2D-3D registration incorporating a grayscale compression method to segment bone structures was proposed. Portal images containing only bone structures (Portalbone) and digitally reconstructed radiographs containing only bone structures (DRRbone) were used for registration. First, the portal image was filtered by a high-pass finite impulse response (FIR) filter. Then the grayscale range of the filtered portal image was compressed. Thresholds were determined based on the difference in gray values of bone structures in the filtered and compressed portal image to obtainPortalbone.Another threshold was applied to generateDRRbonewhen the CT image uses the ray-casting algorithm to generate DRR images. The compression performance was assessed by registering theDRRbonewith thePortalboneobtained by compressing the portal image into various grayscale ranges. The proposed registration method was quantitatively and visually validated using (1) a CT image of an anthropomorphic head phantom and its portal images obtained in different poses and (2) CT images and pre-treatment portal images of 20 patients treated with non-coplanar radiotherapy.Results. Mean absolute registration errors for the best compression grayscale range test were 0.642 mm, 0.574 mm, and 0.643 mm, with calculation times of 50.6 min, 42.2 min, and 49.6 min for grayscale ranges of 0-127, 0-63 and 0-31, respectively. For the accuracy validation (1), the mean absolute registration errors for couch angles 0°, 45°, 90°, 270°, and 315° were 0.694 mm, 0.839 mm, 0.726 mm, 0.833 mm, and 0.873 mm, respectively. Among the six transformation parameters, the translation error in the vertical direction contributed the most to the registration errors. Visual inspection of the patient registration results revealed success in every instance.Conclusions. The implemented grayscale compression method successfully enhances and segments bone structures in portal images, allowing for accurate determination of patient setup errors in non-coplanar radiotherapy.
Collapse
Affiliation(s)
- Zhiyue Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Tantan Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lijing Zuo
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yongli Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Ran Wei
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
2
|
Yang K, Luo Y, Zhao Y, Su S, Qu D, Zhao X, Song G. A novel 2D/3D hierarchical registration framework via principal-directional Fourier transform operator. Phys Med Biol 2021; 66:065030. [PMID: 33631735 DOI: 10.1088/1361-6560/abe9f5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An effective registration framework between preoperative 3D computed tomography and intraoperative 2D x-ray images is crucial in image-guided therapy. In this paper, a novel 2D/3D hierarchical registration framework via principal-directional Fourier transform operator (HRF-PDFTO) is proposed. First, a PDFTO was established to obtain the in-plane translation and rotation invariance. Then, an initial free template-matching approach based on PDFTO was utilized to avoid initial value assignment and expand the capture range of registration. Finally, the hierarchical registration framework, HRF-PDFTO, was proposed to reduce the dimensions of the registration search space from n 6 to n 2. The experimental results demonstrated that the proposed HRF-PDFTO has good performance with an accuracy of 0.72 mm, and a single registration time of 16 s, which improves the registration efficiency by ten times. Consequently, the HRF-PDFTO can meet the accuracy and efficiency requirements of 2D/3D registration in related clinical applications.
Collapse
Affiliation(s)
- Keke Yang
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yang Luo
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Yiwen Zhao
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Shun Su
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Danyang Qu
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Xingang Zhao
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Guoli Song
- The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,The Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,The Liaoning Medical Surgery and Rehabilitation Robot Engineering Research Center, Shenyang 110134, People's Republic of China
| |
Collapse
|