1
|
Jones MA, Sadeghipour N, Chen X, Islam W, Zheng B. A multi-stage fusion framework to classify breast lesions using deep learning and radiomics features computed from four-view mammograms. Med Phys 2023; 50:7670-7683. [PMID: 37083190 PMCID: PMC10589387 DOI: 10.1002/mp.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Developing computer aided diagnosis (CAD) schemes of mammograms to classify between malignant and benign breast lesions has attracted a lot of research attention over the last several decades. However, unlike radiologists who make diagnostic decisions based on the fusion of image features extracted from multi-view mammograms, most CAD schemes are single-view-based schemes, which limit CAD performance and clinical utility. PURPOSE This study aims to develop and test a novel CAD framework that optimally fuses information extracted from ipsilateral views of bilateral mammograms using both deep transfer learning (DTL) and radiomics feature extraction methods. METHODS An image dataset containing 353 benign and 611 malignant cases is assembled. Each case contains four images: the craniocaudal (CC) and mediolateral oblique (MLO) view of the left and right breast. First, we extract four matching regions of interest (ROIs) from images that surround centers of two suspicious lesion regions seen in CC and MLO views, as well as matching ROIs in the contralateral breasts. Next, the handcrafted radiomics (HCRs) features and VGG16 model-generated automated features are extracted from each ROI resulting in eight feature vectors. Then, after reducing feature dimensionality and quantifying the bilateral and ipsilateral asymmetry of four ROIs to yield four new feature vectors, we test four fusion methods to build three support vector machine (SVM) classifiers by an optimal fusion of asymmetrical image features extracted from four view images. RESULTS Using a 10-fold cross-validation method, results show that a SVM classifier trained using an optimal fusion of four view images yields the highest classification performance (AUC = 0.876 ± 0.031), which significantly outperforms SVM classifiers trained using one projection view alone, AUC = 0.817 ± 0.026 and 0.792 ± 0.026 for the CC and MLO view of bilateral mammograms, respectively (p < 0.001). CONCLUSIONS The study demonstrates that the shift from single-view CAD to four-view CAD and the inclusion of both DTL and radiomics features significantly increases CAD performance in distinguishing between malignant and benign breast lesions.
Collapse
Affiliation(s)
- Meredith A. Jones
- School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Negar Sadeghipour
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Xuxin Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Warid Islam
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Bin Zheng
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
2
|
Nguyen AA, McCarthy AM, Kontos D. Combining Molecular and Radiomic Features for Risk Assessment in Breast Cancer. Annu Rev Biomed Data Sci 2023; 6:299-311. [PMID: 37159874 DOI: 10.1146/annurev-biodatasci-020722-092748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.
Collapse
Affiliation(s)
- Alex A Nguyen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne Marie McCarthy
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Despina Kontos
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
3
|
Loizidou K, Skouroumouni G, Savvidou G, Constantinidou A, Nikolaou C, Pitris C. Prediction of Near-Term Breast Cancer Occurrence using Subtraction of Temporally Sequential Digital Mammograms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083675 DOI: 10.1109/embc40787.2023.10340866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Breast cancer remains one of the leading cancers for women worldwide. Fortunately, with the introduction of mammography, the mortality rate has significantly decreased. However, earlier breast cancer prediction could effectively increase the survival rates, improve patient outcomes, and avoid unnecessary biopsies. For that purpose, prediction of breast cancer, using subtraction of temporally sequential digital mammograms and machine learning, is proposed. A new dataset was collected with 192 images from 32 patients (three screening rounds, with two views of each breast). This dataset included precise annotation of each individual malignant mass, present in the most recent mammogram, with the two priors being radiologically evaluated as normal. The most recent mammogram was considered as the "future" screening round and provided the location of the mass as the ground truth for the training. The two previous mammograms, the "current" and the "prior", were processed and a new, difference image was formed for the prediction. Ninety-six features were extracted and five feature selection algorithms were combined to identify the most important features. Ten classifiers were tested in leave-one-patient-out and k-fold-patient cross-validation (k = 4 and 8). Ensemble Voting achieved the highest performance in the prediction of the development of breast mass in the next screening round, with 85.7% sensitivity, 83.7% specificity, 83.7% accuracy and 0.85 AUC. The proposed methodology could lead to a new mammography-based model that could predict the short-term risk for developing a malignancy, thus providing an earlier diagnosis.
Collapse
|
4
|
Prediction of Short-Term Breast Cancer Risk with Fusion of CC- and MLO-Based Risk Models in Four-View Mammograms. J Digit Imaging 2022; 35:910-922. [PMID: 35262841 PMCID: PMC9485387 DOI: 10.1007/s10278-019-00266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This study performed and assessed a novel program to improve the accuracy of short-term breast cancer risk prediction by using information from craniocaudal (CC) and mediolateral-oblique (MLO) views of two breasts. An age-matched dataset of 556 patients with at least two sequential full-field digital mammography examinations was applied. In the second examination, 278 cases were diagnosed and pathologically verified as cancer, and 278 were negative, while all cases in the first examination were negative (not recalled). Two generalized linear-model-based risk prediction models were established with global- and local-based bilateral asymmetry features for CC and MLO views first. Then, a new fusion risk model was developed by fusing prediction results of the CC- and MLO-based risk models with an adaptive alpha-integration-based fusion method. The AUC of the fusion risk model was 0.72 ± 0.02, which was significantly higher than the AUC of CC- or MLO-based risk model (P < 0.05). The maximum odds ratio for CC- and MLO-based risk models were 8.09 and 5.25, respectively, and increased to 11.99 for the fusion risk model. For subgroups of patients aged 37-49 years, 50-65 years, and 66-87 years, the AUCs of 0.73, 0.71, and 0.75 for the fusion risk model were higher than AUC for CC- and MLO-based risk models. For the BIRADS 2 and 3 subgroups, the AUC values were 0.72 and 0.71 respectively for the fusion risk model which were higher than the AUC for the CC- and MLO-based risk models. This study demonstrated that the fusion risk model we established could effectively derive and integrate supplementary and useful information extracted from both CC and MLO view images and adaptively fuse them to increase the predictive power of the short-term breast cancer risk assessment model.
Collapse
|
5
|
Lin F, Sun H, Han L, Li J, Bao N, Li H, Chen J, Zhou S, Yu T. An effective fine grading method of BI-RADS classification in mammography. Int J Comput Assist Radiol Surg 2021; 17:239-247. [PMID: 34940931 DOI: 10.1007/s11548-021-02541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Mammography is an important imaging technique for the detection of early breast cancer. Doctors classify mammograms as Breast Imaging Reporting and Data Systems (BI-RADS). This study aims to provide an intelligent BI-RADS grading prediction method, which can help radiologists and clinicians to distinguish the most challenging 4A, 4B, and 4C cases in mammography. METHODS Firstly, the breast region, the lesion region, and the corresponding region in the contralateral breast were extracted. Four categories of features were extracted from the original images and the images after the wavelet transform. Secondly, an optimized sequential forward floating selection (SFFS) was used for feature selection. Finally, a two-layer classifier integration was employed for fine grading prediction. 45 cases from the hospital and 500 cases from Digital Database for Screening Mammography (DDSM) database were used for evaluation. RESULTS The classification performance of the support vector machine (SVM), Bayes, and random forest is very close on the 45 testing set, with the area under the receiver operating characteristic curve (AUC) of 0.978, 0.967, and 0.968. On the DDSM set, the AUC achieves 0.931, 0.938, and 0.874. Using the mean probability prediction, the AUC on the two datasets reaches 0.998 and 0.916. However, they are all significantly higher than the doctors' diagnosis, with the AUC of 0.807 and 0.725. CONCLUSIONS A BI-RADS fine grading (2, 3, 4A, 4B, 4C, 5) prediction model was proposed. Through the evaluation from different datasets, the performance is proved higher than that of the doctors, which may provide great help for clinical BI-RADS classification diagnosis. Therefore, our method can produce more effective and reliable results.
Collapse
Affiliation(s)
- Fei Lin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hang Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lu Han
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jing Li
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Nan Bao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hong Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Jing Chen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
6
|
Breast cancer incidence by age at discovery of mammographic abnormality in women participating in French organized screening campaigns. Public Health 2021; 202:121-130. [PMID: 34952431 DOI: 10.1016/j.puhe.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Statistical modeling was already predicted the occurrence/prognosis of breast cancer from previous radiological findings. This study predicts the breast cancer risk by the age at discovery of mammographic abnormality in the French breast cancer screening program. STUDY DESIGN This was a cohort study. METHODS The study included 261,083 women who meet the inclusion criteria: aged 50-74 years, living in French departments (Ain, Doubs, Haute-Saône, Jura, Territoire-de-Belfort, and Yonne), with at least two mammograms between January 1999 and December 2017, of which the first was 'normal/benign'. The incidence of each abnormality (microcalcifications, spiculated mass, obscured mass, architectural distortion, and asymmetric density) was first estimated, then the breast cancer risk was predicted secondly according to the age at discovery of each mammographic abnormality, using an actuarial life table and a Cox model. RESULTS Overall breast cancer (6326 cases) incidence was 3.3 (3.0; 3.1)/1000 person-years. The breast cancer incidence increased proportionally with the discovery age of the speculated mass and microcalcifications. The incidence was twice as high when the spiculated mass age of discovery was ≥70 (12.2 [10.4; 14.4]) compared with age 50-54 years (5.8 [5.1; 6.7]). Depending on the spiculated mass discovery age, the breast cancer risk increased by at least 40% between the age groups 55-59 years (1.4 [1.0; 1.8]) and ≥70 years (2.4 [1.9; 3.3]). Whatever the abnormality, the incidence of breast cancer was higher when it was present in only one breast. CONCLUSION The study highlights a stable incidence of breast cancer between successive mammograms, an increased risk of breast cancer with the finding age of spiculated mass and microcalcifications. The reduced delay between the abnormality discovery date and the breast cancer diagnosis date would justify a specific follow-up protocol after the finding of these two abnormalities.
Collapse
|
7
|
The status of medical physics in radiotherapy in China. Phys Med 2021; 85:147-157. [PMID: 34010803 DOI: 10.1016/j.ejmp.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc. MATERIALS AND METHODS: The information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations. RESULTS By 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018. CONCLUSIONS Demand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.
Collapse
|
8
|
Ha R, Chang P, Karcich J, Mutasa S, Pascual Van Sant E, Liu MZ, Jambawalikar S. Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset. Acad Radiol 2019; 26:544-549. [PMID: 30072292 PMCID: PMC8114104 DOI: 10.1016/j.acra.2018.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE AND OBJECTIVES We propose a novel convolutional neural network derived pixel-wise breast cancer risk model using mammographic dataset. MATERIALS AND METHODS An institutional review board approved retrospective case-control study of 1474 mammographic images was performed in average risk women. First, 210 patients with new incidence of breast cancer were identified. Mammograms from these patients prior to developing breast cancer were identified and made up the case group [420 bilateral craniocaudal mammograms]. The control group consisted of 527 patients without breast cancer from the same time period. Prior mammograms from these patients made up the control group [1054 bilateral craniocaudal mammograms]. A convolutional neural network (CNN) architecture was designed for pixel-wise breast cancer risk prediction. Briefly, each mammogram was normalized as a map of z-scores and resized to an input image size of 256 × 256. Then a contracting and expanding fully convolutional CNN architecture was composed entirely of 3 × 3 convolutions, a total of four strided convolutions instead of pooling layers, and symmetric residual connections. L2 regularization and augmentation methods were implemented to prevent overfitting. Cases were separated into training (80%) and test sets (20%). A 5-fold cross validation was performed. Software code was written in Python using the TensorFlow module on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. RESULTS The average age of patients between the case and the control groups was not statistically different [case: 57.4years (SD, 10.4) and control: 58.2years (SD, 10.9), p = 0.33]. Breast Density (BD) was significantly higher in the case group [2.39 (SD, 0.7)] than the control group [1.98 (SD, 0.75), p < 0.0001]. On multivariate logistic regression analysis, both CNN pixel-wise mammographic risk model and BD were significant independent predictors of breast cancer risk (p < 0.0001). The CNN risk model showed greater predictive potential [OR = 4.42 (95% CI, 3.4-5.7] compared to BD [OR = 1.67 (95% CI, 1.4-1.9). The CNN risk model achieved an overall accuracy of 72% (95%CI, 69.8-74.4) in predicting patients in the case group. CONCLUSION Novel pixel-wise mammographic breast evaluation using a CNN architecture can stratify breast cancer risk, independent of the BD. Larger dataset will likely improve our model.
Collapse
Affiliation(s)
- Richard Ha
- Research and Education, Breast Imaging Section, Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY 10032.
| | - Peter Chang
- UC San Francisco Medical Center, Department of Radiology, 505 Parnassus Avenue, San Francisco, CA 94143
| | - Jenika Karcich
- Department of Radiology, Columbia University Medical Center, New York, New York 10032
| | - Simukayi Mutasa
- Department of Radiology, Columbia University Medical Center, New York, New York 10032
| | | | - Michael Z Liu
- Department of Medical Physics, Columbia University Medical Center, New York, New York 10032-3784
| | - Sachin Jambawalikar
- Department of Medical Physics, Columbia University Medical Center, New York, New York 10032-3784
| |
Collapse
|
9
|
Mango VL. Mammographic Breast Density: More than Meets the Eye. Acad Radiol 2019; 26:542-543. [PMID: 30738806 DOI: 10.1016/j.acra.2019.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Victoria L Mango
- Department of Radiology, Memorial Sloan Kettering Cancer Center, Breast and Imaging Center, 300 East 66th Street, Suite 715, New York, NY 10065.
| |
Collapse
|