Lindborg L, Lillhök J, Kyriakou I, Emfietzoglou D. Dose-mean lineal energy values for electrons by different Monte Carlo codes: Consequences for estimates of radiation quality in photon beams.
Med Phys 2021;
49:1286-1296. [PMID:
34905630 DOI:
10.1002/mp.15412]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND
The microdosimetric quantity lineal energy and its mean values have proven useful for quantifying radiation quality in many situations. The ratio of dose-mean lineal energies is perhaps the simplest quantity for quantifying differences between two radiation qualities. However, published dose-mean lineal energy values from different codes may differ significantly with potential influence on radiation quality estimates.
PURPOSE
The purpose was to compare dose-mean lineal energy values from different track-structure data sets for condensed water vapor and liquid water, and to evaluate the influence on radiation quality estimations for some photon sources.
METHODS
Published dose-mean lineal energy values for 0.1 keV to 1 MeV electrons in spheres with diameters 2 nm to 1 μm, calculated with water vapor and liquid water track structure codes and proximity functions, were collected, analyzed, and compared. Data for cylinders were converted to spheres using a theoretical transformation published by Kellerer. A new set of dose-mean lineal energy values was calculated to cover the whole range of volumes of interest here using the GEANT4-DNA code. The influence from the differences between codes on radiation quality calculations was estimated using dose-mean lineal energy ratios for the photon sources 125 I, 169 Yb, and 192 Ir relative to 60 Co.
RESULTS
The theoretical relation for converting the dose-mean lineal energy between different geometrical volumes, results in differences up to 10% between cylinders and spheres depending on electron energy and target size, in agreement with published simulated results. For spheres with diameter above 100 nm, dose-mean lineal energy values for condensed water vapor and liquid water are with few exceptions within ±10%. Below 100 nm, the difference increases with decreasing diameter reaching a factor of two at 2 nm. The values from water vapor codes are in general larger than from liquid water codes. If the dose-mean lineal energy ratio is based on condensed water vapor instead of liquid water, the ratio differs less than 9% for the nuclides 125 I, 169 Yb, and 192 Ir relative to 60 Co independent of the volume simulated. However, a specific value of the dose-mean lineal energy ratio, is found at a larger target diameter in liquid water than in condensed water vapor.
CONCLUSIONS
When ratios of the dose-mean lineal energy are used as a measure of the radiation quality it is important to compare values for geometrically equal target shapes. A practical method of converting values for cylinders of equal diameter and height to spheres was demonstrated. Although dose-mean lineal energy values calculated with water vapor and liquid water codes may differ significantly, the radiation quality, in terms of ratios of dose-mean lineal energy, for the three photon sources 192 Ir, 169 Yb, and 125 I relative to 60 Co, agree within 9%. The same ratio appears at a larger diameter when a liquid water code is used. It is therefore important to use the same code in radiation quality investigations. The present findings may be of special interest in studies related to the relative biological effectiveness (RBE).
Collapse