1
|
Sommer LB, Kampfer S, Chemnitz T, Breitkreutz H, Combs SE, Wilkens JJ. Pencil beam kernel-based dose calculations on CT data for a mixed neutron-gamma fission field applying tissue correction factors. Phys Med Biol 2024; 69:045022. [PMID: 38241727 DOI: 10.1088/1361-6560/ad209b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Objective.For fast neutron therapy with mixed neutron and gamma radiation at the fission neutron therapy facility MEDAPP at the research reactor FRM II in Garching, no clinical dose calculation software was available in the past. Here, we present a customized solution for research purposes to overcome this lack of three-dimensional dose calculation.Approach.The applied dose calculation method is based on two sets of decomposed pencil beam kernels for neutron and gamma radiation. The decomposition was performed using measured output factors and simulated depth dose curves and beam profiles in water as reference medium. While measurements were performed by applying the two-chamber dosimetry method, simulated data was generated using the Monte Carlo code MCNP. For the calculation of neutron dose deposition on CT data, tissue-specific correction factors were generated for soft tissue, bone, and lung tissue for the MEDAPP neutron spectrum. The pencil beam calculations were evaluated with reference to Monte Carlo calculations regarding accuracy and time efficiency.Main results.In water, dose distributions calculated using the pencil beam approach reproduced the input from Monte Carlo simulations. For heterogeneous media, an assessment of the tissue-specific correction factors with reference to Monte Carlo simulations for different tissue configurations showed promising results. Especially for scenarios where no lung tissue is present, the dose calculation could be highly improved by the applied correction method.Significance.With the presented approach, time-efficient dose calculations on CT data and treatment plan evaluations for research purposes are now available for MEDAPP.
Collapse
Affiliation(s)
- Lucas B Sommer
- Technical University of Munich (TUM), TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, D-85748 Garching, Germany
- TUM, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, D-85748 Garching, Germany
- TUM, TUM School of Medicine and Klinikum Rechts der Isar, Department of Radiation Oncology, Ismaninger Str. 22, D-81675 Munich, Germany
| | - Severin Kampfer
- Technical University of Munich (TUM), TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, D-85748 Garching, Germany
- TUM, TUM School of Medicine and Klinikum Rechts der Isar, Department of Radiation Oncology, Ismaninger Str. 22, D-81675 Munich, Germany
| | - Tobias Chemnitz
- TUM, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Harald Breitkreutz
- TUM, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Stephanie E Combs
- TUM, TUM School of Medicine and Klinikum Rechts der Isar, Department of Radiation Oncology, Ismaninger Str. 22, D-81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jan J Wilkens
- Technical University of Munich (TUM), TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, D-85748 Garching, Germany
- TUM, TUM School of Medicine and Klinikum Rechts der Isar, Department of Radiation Oncology, Ismaninger Str. 22, D-81675 Munich, Germany
| |
Collapse
|
2
|
Moffitt GB, Sandison GA, Argento DC, Emery R, Wootton LS, Parvathaneni U, Liao JJ, Laramore GE, Stewart RD. Effects of tissue heterogeneity and comparisons of collapsed cone and Monte Carlo fast neutron patient dosimetry using the University of Washington clinical neutron therapy system (CNTS). Phys Med Biol 2023; 68:245011. [PMID: 37983905 DOI: 10.1088/1361-6560/ad0e38] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Fast neutron therapy is a high linear energy transfer (LET) radiation treatment modality offering advantages over low LET radiations. Multileaf collimator technology reduces normal-tissue dose (toxicity) and makes neutron therapy more comparable to MV x-ray treatments. Published clinical-trial and other experiences with fast neutron therapy are reported. Early comparative studies failed to consider differences in target-dose spatial conformality between x-ray and neutron treatments, which is especially important for organs-at-risk close to tumor targets. Treatments planning systems (TPS) for high-energy neutrons lag behind TPS tools for MV x-rays, creating challenges for comparative studies of clinical outcomes. A previously published Monte Carlo model of the University of Washington (UW) Clinical Neutron Therapy System (CNTS) is refined and integrated with the RayStation TPS as an external dose planning/verification tool. The collapsed cone (CC) dose calculations in the TPS are based on measured dose profiles and output factors in water, with the absolute dose determined using a tissue-equivalent ionization chamber. For comparison, independent (external) Monte Carlo simulation computes dose on a voxel-by-voxel basis using an atlas that maps Hounsfield Unit (HU) numbers to elemental composition and density. Although the CC algorithm in the TPS accurately computes neutron dose to water compared to Monte Carlo calculations, calculated dose to water differs from bone or tissue depending largely on hydrogen content. Therefore, the elemental composition of tissue and bone, rather than the material or electron density, affects fast neutron dose. While the CC algorithm suffices for reproducible patient dosimetry in fast neutron therapy, adopting methods that consider tissue heterogeneity would enhance patient-specific neutron dose accuracy relative to national standards for other types of ionizing radiation. Corrections for tissue composition have a significant impact on absolute dose and the relative biological effectiveness (RBE) of neutron treatments compared to other radiation types (MV x-rays, protons, and carbon ions).
Collapse
Affiliation(s)
- Gregory B Moffitt
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - George A Sandison
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - David C Argento
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - Robert Emery
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - Landon S Wootton
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
- Baylor Scott and White, Department of Radiation Oncology, 4516 Monterosa Lane, Round Rock, TX 78665, United States of America
| | - Upendra Parvathaneni
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - Jay J Liao
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - George E Laramore
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | - Robert D Stewart
- University of Washington School of Medicine, Department of Radiation Oncology, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| |
Collapse
|
3
|
Gulidov I, Koryakin S, Fatkhudinov T, Gordon K. External Beam Fast Neutron Therapy: Russian Clinical Experience and Prospects for Further Development. Int J Radiat Oncol Biol Phys 2023; 115:821-827. [PMID: 36822785 DOI: 10.1016/j.ijrobp.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 02/25/2023]
Affiliation(s)
- Igor Gulidov
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Sergey Koryakin
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Timur Fatkhudinov
- Federal State Autonomous Educational Institution of Higher Education ''People's Friendship University of Russia'', Medical Institution, Moscow, Russia
| | - Konstantin Gordon
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia; Federal State Autonomous Educational Institution of Higher Education ''People's Friendship University of Russia'', Medical Institution, Moscow, Russia.
| |
Collapse
|
4
|
Gordon K, Gulidov I, Fatkhudinov T, Koryakin S, Kaprin A. Fast and Furious: Fast Neutron Therapy in Cancer Treatment. Int J Part Ther 2022; 9:59-69. [PMID: 36060415 PMCID: PMC9415749 DOI: 10.14338/ijpt-22-00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Fast neutron therapy has been used for decades. In conjunction with recent advances in photonic techniques, fast neutrons are no longer of much oncologic interest, which is not unequivocally positive, given their undoubted therapeutic value. This mini-review recalls the history of medical research on fast neutrons, considers their physical and radiobiological properties alongside their benefits for cancer treatment, and discusses their place in modern radiation oncology.
Collapse
Affiliation(s)
- Konstantin Gordon
- 1 Federal State Autonomous Educational Institution of Higher Education “People's Friendship University of Russia,” Medical Institution, Moscow, Russia
- 2 A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Igor Gulidov
- 2 A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Timur Fatkhudinov
- 1 Federal State Autonomous Educational Institution of Higher Education “People's Friendship University of Russia,” Medical Institution, Moscow, Russia
| | - Sergey Koryakin
- 2 A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- 1 Federal State Autonomous Educational Institution of Higher Education “People's Friendship University of Russia,” Medical Institution, Moscow, Russia
- 2 A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| |
Collapse
|
5
|
Tillery H, Moore M, Gallagher KJ, Taddei PJ, Leuro E, Argento DC, Moffitt GB, Kranz M, Carey M, Heymsfield S, Newhauser WD. Personalized 3D-printed anthropomorphic whole-body phantom irradiated by protons, photons, and neutrons. Biomed Phys Eng Express 2022; 8. [PMID: 35045408 DOI: 10.1088/2057-1976/ac4d04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
The objective of this study was to confirm the feasibility of three-dimensionally-printed (3D-printed), personalized whole-body anthropomorphic phantoms for radiation dose measurements in a variety of charged and uncharged particle radiation fields. We 3D-printed a personalized whole-body phantom of an adult female with a height of 154.8 cm, mass of 90.7 kg, and body mass index of 37.8 kg/m2. The phantom comprised of a hollow plastic shell filled with water and included a watertight access conduit for positioning dosimeters. It is compatible with a wide variety of radiation dosimeters, including ionization chambers that are suitable for uncharged and charged particles. Its mass was 6.8 kg empty and 98 kg when filled with water. Watertightness and mechanical robustness were confirmed after multiple experiments and transportations between institutions. The phantom was irradiated to the cranium with therapeutic beams of 170-MeV protons, 6-MV photons, and fast neutrons. Radiation absorbed dose was measured from the cranium to the pelvis along the longitudinal central axis of the phantom. The dose measurements were made using established dosimetry protocols and well-characterized instruments. For the therapeutic environments considered in this study, stray radiation from intracranial treatment beams was the lowest for proton therapy, intermediate for photon therapy, and highest for neutron therapy. An illustrative example set of measurements at the location of the thyroid for a square field of 5.3 cm per side resulted in 0.09, 0.59, and 1.93 cGy/Gy from proton, photon, and neutron beams, respectively. In this study, we found that 3D-printed personalized phantoms are feasible, inherently reproducible, and well-suited for therapeutic radiation measurements. The measurement methodologies we developed enabled the direct comparison of radiation exposures from neutron, proton, and photon beam irradiations.
Collapse
Affiliation(s)
- Hunter Tillery
- Radiation Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, KPV4, Portland, Oregon, 97239-3098, UNITED STATES
| | - Meagan Moore
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Kyle Joseph Gallagher
- Radiation Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, KPV4, Portland, Oregon, 97239-3098, UNITED STATES
| | - Phillip J Taddei
- Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, Minnesota, 55905, UNITED STATES
| | - Eric Leuro
- Seattle Cancer Care Alliance, 1570 N 115th St, Seattle, Washington, 98133, UNITED STATES
| | - David C Argento
- Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Gregory B Moffitt
- Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Marissa Kranz
- University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Margaret Carey
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Steven Heymsfield
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Wayne David Newhauser
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| |
Collapse
|
6
|
Viscariello N, Greer MD, Parvathaneni U, Liao JJ, Laramore GE, Stewart RD. Comparisons of 3-Dimensional Conformal and Intensity-Modulated Neutron Therapy for Head and Neck Cancers. Int J Part Ther 2021; 8:51-61. [PMID: 34722811 PMCID: PMC8489487 DOI: 10.14338/ijpt-20-00059.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Neutron therapy is a high linear energy transfer modality that is useful for the treatment of radioresistant head and neck (H&N) cancers. It has been limited to 3-dimensioanal conformal-based fast-neutron therapy (3DCNT), but recent technical advances have enabled the clinical implementation of intensity-modulated neutron therapy (IMNT). This study evaluated the comparative dosimetry of IMNT and 3DCNT plans for the treatment of H&N cancers. MATERIALS AND METHODS Seven H&N IMNT plans were retrospectively created for patients previously treated with 3DCNT at the University of Washington (Seattle). A custom RayStation model with neutron-specific scattering kernels was used for inverse planning. Organ-at-risk (OAR) objectives from the original 3DCNT plan were initially used and were then systematically reduced to investigate the feasibility of improving a therapeutic ratio, defined as the ratio of the mean tumor to OAR dose. The IMNT and 3DCNT plan quality was evaluated using the therapeutic ratio, isodose contours, and dose volume histograms. RESULTS When compared with the 3DCNT plans, IMNT reduces the OAR dose for the equivalent tumor coverage. Moreover, IMNT is most advantageous for OARs in close spatial proximity to the target. For the 7 patients with H&N cancers examined, the therapeutic ratio for IMNT increased by an average of 56% when compared with the 3DCNT. The maximum OAR dose was reduced by an average of 20.5% and 20.7% for the spinal cord and temporal lobe, respectively. The mean dose to the larynx decreased by an average of 80%. CONCLUSION The IMNT significantly decreases the OAR doses compared with 3DCNT and provides comparable tumor coverage. Improvements in the therapeutic ratio with IMNT are especially significant for dose-limiting OARs near tumor targets. Moreover, IMNT provides superior sparing of healthy tissues and creates significant new opportunities to improve the care of patients with H&N cancers treated with neutron therapy.
Collapse
Affiliation(s)
- Natalie Viscariello
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Matthew D. Greer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | | | - Jay J. Liao
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - George E. Laramore
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Robert D. Stewart
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Aljabab S, Lui A, Wong T, Liao J, Laramore G, Parvathaneni U. A Combined Neutron and Proton Regimen for Advanced Salivary Tumors: Early Clinical Experience. Cureus 2021; 13:e14844. [PMID: 34104589 PMCID: PMC8175057 DOI: 10.7759/cureus.14844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and objective Fast neutron radiotherapy (NRT) is a high linear energy transfer (LET) particle therapy that offers a local control (LC) advantage over low-LET X-rays in the treatment of advanced and unresectable salivary gland malignancies. However, in tumors approximating the base of skull (BOS), target volumes may be underdosed to minimize toxicity to the central nervous system (CNS). In this setting, a proton beam boost to the underdosed part of the tumor may improve LC. We report our early experience with a hybrid neutron-proton approach in patients with BOS involvement. Materials and methods We retrospectively reviewed 29 patients with locally advanced and unresectable salivary gland tumors involving the BOS between 2014-2018. The median age of the patients was 56 years, with the majority of them having adenoid cystic carcinomas (ACC) (79%) with advanced T4a/b disease (86%), pathologic perineural invasion (PNI) (55.2%), and orbital invasion (34.5%). Five patients (17.2%) were cases of re-irradiation. Surgical resection was attempted in 15 patients (51.7%), of which none achieved negative margins. The median neutron dose was 18.4 neutron Gray (nGy) with a sequential proton boost (PB) with a median dose of 25 Gy [relative biological effectiveness (RBE)] (range: 16-45 Gy). Toxicity was graded per the Common Terminology Criteria for Adverse Events (CTCAE) version 4.03. Descriptive statistics and the Kaplan-Meier method were used. Results At a median follow-up of 18.9 months [interquartile range (IQR): 6.1-32.5], the entire cohort's overall survival (OS) was 93.1%, progression-free survival (PFS) was 79.3%, and LC was 89.7%. Among patients who were not re-irradiated (n=24), the most commonly recorded acute grade 3 toxicities were mucositis (50%) and dermatitis (37.5%). There was no documented acute grade 4/5 events. Late grade 3/4 events included trismus (n=1), hearing loss (n=2), visual loss (n=6), and bone necrosis (n=1). There were no reported late grade 5 events in de novo patients. Conclusion In this challenging cohort with a poor prognosis, early outcomes for a hybrid neutron-proton approach were found to be promising. Further studies involving longer follow-ups with a larger cohort of patients are required to validate our findings.
Collapse
Affiliation(s)
- Saif Aljabab
- Department of Radiation Oncology, King Saud University, Riyadh, SAU
| | - Andrew Lui
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - Tony Wong
- Department of Medical Physics, Seattle Cancer Care Alliance Proton Therapy Center, Seattle, USA
| | - Jay Liao
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - George Laramore
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | | |
Collapse
|
8
|
Moffitt GB, Wootton LS, Hårdemark B, Sandison GA, Laramore GE, Parvathaneni U, Stewart RD. Scattering kernels for fast neutron therapy treatment planning. Phys Med Biol 2020; 65:165009. [DOI: 10.1088/1361-6560/ab9a85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Estimating radiation protection factor (RPF) values for a simple surrogate vehicle using the MCNP6.1 code. Appl Radiat Isot 2019; 153:108825. [DOI: 10.1016/j.apradiso.2019.108825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 11/22/2022]
|
10
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
11
|
Abstract
Purpose: Neutrons were an active field of radiobiology at the time of publication of the first issues of the International Journal of Radiation Biology in 1959. Three back-to-back papers published by Neary and his colleagues contain key elements of interest at the time. The present article aims to put these papers into context with the discovery of the neutron 27 years previously and then give a feel for how the field has progressed to the present day. It does not intend to provide a comprehensive review of this enormous field, but rather to provide selective summaries of main driving forces and developments. Conclusions: Neutron radiobiology has continued as a vigorous field of study throughout the past 84 years. Main driving forces have included concern for protection from the harmful effects of neutrons, exploitation and optimization for cancer therapy (fast beam therapy, brachytherapy and boron capture therapy), and scientific curiosity about the mechanisms of radiation action. Effort has fluctuated as the emphasis has shifted from time to time, but all three areas remain active today. Whatever the future holds for the various types of neutron therapy, the health protection aspects will remain with us permanently because of natural environmental exposure to neutrons as well as increased additional exposures from a variety of human activities.
Collapse
|
12
|
Stewart RD. Induction of DNA Damage by Light Ions Relative to 60Co γ-rays. Int J Part Ther 2018; 5:25-39. [PMID: 31773018 PMCID: PMC6871587 DOI: 10.14338/ijpt-18-00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
The specific types and numbers of clusters of DNA lesions, including both DNA double-strand breaks (DSBs) and non-DSB clusters, are widely considered 1 of the most important initiating events underlying the relative biological effectiveness (RBE) of the light ions of interest in the treatment of cancer related to megavoltage x-rays and 60Co γ-rays. This review summarizes the categorization of DNA damage, reviews the underlying mechanisms of action by ionizing radiation, and quantifies the general trends in DSB and non-DSB cluster formation by light ions under normoxic and anoxic conditions, as predicted by Monte Carlo simulations that reflect the accumulated evidence from decades of research on radiation damage to DNA. The significance of the absolute and relative numbers of clusters and the local complexity of DSB and non-DSB clusters are discussed in relation to the formation of chromosome aberrations and the loss of cell reproductive capacity. Clinical implications of the dependence of DSB induction on ionization density is reviewed with an eye towards increasing the therapeutic ratio of proton and carbon ion therapy through the explicit optimization of RBE-weighted dose.
Collapse
Affiliation(s)
- Robert D. Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Gallagher KJ, Taddei PJ. Independent application of an analytical model for secondary neutron equivalent dose produced in a passive-scattering proton therapy treatment unit. Phys Med Biol 2018; 63:15NT04. [PMID: 29978833 DOI: 10.1088/1361-6560/aad1bc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to independently apply an analytical model for equivalent dose from neutrons produced in a passive-scattering proton therapy treatment unit, H. To accomplish this objective, we applied the previously-published model to treatment plans of two pediatric patients. Their model accounted for neutrons generated by mono-energetic proton beams stopping in a closed aperture. To implement their model to a clinical setting, we adjusted it to account for the area of a collimating aperture, energy modulation, air gap between the treatment unit and patient, and radiation weighting factor. We used the adjusted model to estimate H per prescribed proton absorbed dose, D Rx , for the passive-scattering proton therapy beams of two children, a 9-year-old girl and 10-year-old boy, who each received intracranial boost fields as part of their treatment. In organs and tissues at risk for radiation-induced subsequent malignant neoplasms, T, we calculated the mass-averaged H, H T , per D Rx . Finally, we compared H T /D Rx values to those of previously-published Monte Carlo (MC) simulations of these patients' fields. H T /D Rx values of the adjusted model deviated from the MC result for each organ on average by 20.8 ± 10.0% and 44.2 ± 17.6% for the girl and boy, respectively. The adjusted model underestimated the MC result in all T of each patient, with the exception of the girl's bladder, for which the adjusted model overestimated H T /D Rx by 3.1%. The adjusted model provided a better estimate of H T /D Rx than the unadjusted model. That is, between the two models, the adjusted model reduced the deviation from the MC result by approximately 37.0% and 46.7% for the girl and boy, respectively. We found that the previously-published analytical model, combined with adjustment factors to enhance its clinical applicability, predicted H T /D Rx in out-of-field organs and tissues at risk for subsequent malignant neoplasms with acceptable accuracy. This independent application demonstrated that the analytical model may be useful broadly for clinicians and researchers to calculate equivalent dose from neutrons produced externally to the patient in passive-scattering proton therapy.
Collapse
Affiliation(s)
- Kyle J Gallagher
- Oregon Health and Science University, Portland, OR, United States of America. Oregon State University, Corvallis, OR, United States of America
| | | |
Collapse
|