1
|
Hill MA, Staut N, Thompson JM, Verhaegen F. Dosimetric validation of SmART-RAD Monte Carlo modelling for x-ray cabinet radiobiology irradiators. Phys Med Biol 2024; 69:095014. [PMID: 38518380 PMCID: PMC11031639 DOI: 10.1088/1361-6560/ad3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.
Collapse
Affiliation(s)
- Mark A Hill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - James M Thompson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Frank Verhaegen
- SmART Scientific Solutions BV, Maastricht, The Netherlands
- Department of Radiation Oncology (Maastro), Research Institute for Oncology & Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Yang H, Howerton B, Brown L, Izumi T, Cheek D, Brandon JA, Marti F, Gedaly R, Adatorwovor R, Chapelin F. Magnetic Resonance Imaging of Macrophage Response to Radiation Therapy. Cancers (Basel) 2023; 15:5874. [PMID: 38136418 PMCID: PMC10742077 DOI: 10.3390/cancers15245874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is a non-invasive imaging modality which, in conjunction with biopsies, provide a qualitative assessment of tumor response to treatment. Intravenous injection of contrast agents such as fluorine (19F) nanoemulsions labels systemic macrophages, which can, then, be tracked in real time with MRI. This method can provide quantifiable insights into the behavior of tumor-associated macrophages (TAMs) in the tumor microenvironment and macrophage recruitment during therapy. METHODS Female mice received mammary fat pad injections of murine breast or colon cancer cell lines. The mice then received an intravenous 19F nanoemulsion injection, followed by a baseline 19F MRI. For each cancer model, half of the mice then received 8 Gy of localized radiation therapy (RT), while others remained untreated. The mice were monitored for two weeks for tumor growth and 9F signal using MRI. RESULTS Across both cohorts, the RT-treated groups presented significant tumor growth reduction or arrest, contrary to the untreated groups. Similarly, the fluorine signal in treated groups increased significantly as early as four days post therapy. The fluorine signal change correlated to tumor volumes irrespective of time. CONCLUSION These results demonstrate the potential of 19F MRI to non-invasively track macrophages during radiation therapy and its prognostic value with regard to tumor growth.
Collapse
Affiliation(s)
- Harrison Yang
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA; (H.Y.); (L.B.)
| | - Brock Howerton
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
| | - Logan Brown
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA; (H.Y.); (L.B.)
| | - Tadahide Izumi
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.I.); (F.M.); (R.G.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Dennis Cheek
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - J. Anthony Brandon
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA;
| | - Francesc Marti
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.I.); (F.M.); (R.G.)
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY 40506, USA
| | - Roberto Gedaly
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.I.); (F.M.); (R.G.)
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY 40506, USA
| | - Reuben Adatorwovor
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA;
| | - Fanny Chapelin
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Izumi T, Rychahou P, Chen L, Smith MH, Valentino J. Copy Number Variation That Influences the Ionizing Radiation Sensitivity of Oral Squamous Cell Carcinoma. Cells 2023; 12:2425. [PMID: 37887269 PMCID: PMC10605269 DOI: 10.3390/cells12202425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Genome instability in cancer cells causes not only point mutations but also structural variations of the genome, including copy number variations (CNVs). It has recently been proposed that CNVs arise in cancer to adapt to a given microenvironment to survive. However, how CNV influences cellular resistance against ionizing radiation remains unknown. PRMT5 (protein arginine methyltransferase 5) and APE1 (apurinic/apyrimidinic endonuclease 1), which enhance repair of DNA double-strand breaks and oxidative DNA damage, are closely localized in the chromosome 14 of the human genome. In this study, the genomics data for the PRMT5 and APE1 genes, including their expression, CNVs, and clinical outcomes, were analyzed using TCGA's data set for oral squamous cell carcinoma patients. The two genes were found to share almost identical CNV values among cancer tissues from oral squamous cell carcinoma (OSCC) patients. Levels of expression of PRMT5 and APE1 in OSCC tissues are highly correlated in cancer but not in normal tissues, suggesting that regulation of PRMT5 and APE1 were overridden by the extent of CNV in the PRMT5-APE1 genome region. High expression levels of PRMT5 and APE1 were both associated with poor survival outcomes after radiation therapy. Simultaneous down-regulation of PRMT5 and APE1 synergistically hampered DNA double-strand break repair and sensitized OSCC cell lines to X-ray irradiation in vitro and in vivo. These results suggest that the extent of CNV in a particular genome region significantly influence the radiation resistance of cancer cells. Profiling CNV in the PRMT5-APE1 genome region may help us to understand the mechanism of the acquired radioresistance of tumor cells, and raises the possibility that simultaneous inhibition of PRMT5 and APE1 may increase the efficacy of radiation therapy.
Collapse
Affiliation(s)
- Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Li Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Molly H. Smith
- Oral Pathology, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Cytology Laboratory, University of Kentucky, Lexington, KY 40506, USA
| | - Joseph Valentino
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Otorhinolaryngology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|
5
|
Mahuvava C, Esplen NM, Poirier Y, Kry SF, Bazalova-Carter M. Dose calculations for pre-clinical radiobiology experiments conducted with single-field cabinet irradiators. Med Phys 2022; 49:1911-1923. [PMID: 35066889 DOI: 10.1002/mp.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To provide percentage depth-dose (PDD) data along the central axis for dosimetry calculations in small-animal radiation biology experiments performed in cabinet irradiators. The PDDs are provided as a function of source-to-surface distance (SSD), field size and animal size. METHODS The X-ray tube designs for four biological cabinet irradiators, the RS2000, RT250, MultiRad350 and XRAD320, were simulated using the BEAMnrc Monte Carlo code to generate 160, 200, 250 and 320 kVp photon beams, respectively. The 320 kVp beam was simulated with two filtrations: a soft F1 aluminium filter and a hard F2 thoraeus filter made of aluminium, tin and copper. Beams were collimated into circular fields with diameters of 0.5 - 10 cm at SSDs of 10 - 60 cm. Monte Carlo dose calculations in 1 - 5-cm diameter homogeneous (soft tissue) small-animal phantoms as well as in heterogeneous phantoms with 3-mm diameter cylindrical lung and bone inserts (rib and cortical bone) were performed using DOSXYZnrc. The calculated depth doses in three test-cases were estimated by applying SSD, field size and animal size correction factors to a reference case (40 cm SSD, 1 cm field and 5 cm animal size) and these results were compared with the specifically simulated (i.e., expected) doses to assess the accuracy of this method. Dosimetry for two test-case scenarios of 160 and 250 kVp beams (representative of end-user beam qualities) was also performed, whereby the simulated PDDs at two different depths were compared with the results based on the interpolation from reference data. RESULTS The depth doses for three test-cases calculated at 200, 320 kVp F1 and 320 kVp F2, with half value layers (HVL) ranging from ∼0.6 mm to 3.6 mm Cu, agreed well with the expected doses, yielding dose differences of 1.2, 0.1 and 1.0%, respectively. The two end-user test-cases for 160 and 250 kVp beams with respective HVLs of ∼0.8 and 1.8 mm Cu yielded dose differences of 1.4 and 3.2% between the simulated and the interpolated PDDs. The dose increase at the bone-tissue proximal interface ranged from 1.2 to 2.5 times the dose in soft tissue for rib and 1.3 to 3.7 times for cortical bone. The dose drop-off at 1-cm depth beyond the bone ranged from 1.3 - 6.0% for rib and 3.2 - 11.7% for cortical bone. No drastic dose perturbations occurred in the presence of lung, with lung-tissue interface dose of >99% of soft tissue dose and <3% dose increase at 1-cm depth beyond lung. CONCLUSIONS The developed dose estimation method can be used to translate the measured dose at a point to dose at any depth in small-animal phantoms, making it feasible for pre-clinical calculation of dose distributions in animals irradiated with cabinet-style irradiators. The dosimetric impact of bone must be accurately quantified as dramatic dose perturbations at and beyond the bone interfaces can occur due to the relative importance of the photoelectric effect at kilovoltage energies. These results will help improve dosimetric accuracy in pre-clinical experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Courage Mahuvava
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Nolan Matthew Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Yannick Poirier
- Department of Medical Physics, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Stephen F Kry
- Department of Radiation Physics, University of Texas MD Anderson, Cancer Centre, Houston, TX, 77030, USA
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
6
|
Silvestre Patallo I, Carter R, Maughan D, Nisbet A, Schettino G, Subiel A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys Med Biol 2021; 66. [PMID: 34794132 DOI: 10.1088/1361-6560/ac3b35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector's orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform "user's" quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Carter
- Cancer Institute, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Maughan
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Giuseppe Schettino
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, Middlesex, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Anna Subiel
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
7
|
PI3K/mTOR Dual Inhibitor PF-04691502 Is a Schedule-Dependent Radiosensitizer for Gastroenteropancreatic Neuroendocrine Tumors. Cells 2021; 10:cells10051261. [PMID: 34065268 PMCID: PMC8160730 DOI: 10.3390/cells10051261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with advanced-stage gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have a poor overall prognosis despite chemotherapy and radiotherapy (e.g., peptide receptor radionuclide therapy (PRRT)). Better treatment options are needed to improve disease regression and patient survival. The purpose of this study was to examine a new treatment strategy by combining PI3K/mTOR dual inhibition and radiotherapy. First, we assessed the efficacy of two PI3K/mTOR dual inhibitors, PF-04691502 and PKI-402, to inhibit pAkt and increase apoptosis in NET cell lines (BON and QGP-1) and patient-derived tumor spheroids as single agents or combined with radiotherapy (XRT). Treatment with PF-04691502 decreased pAkt (Ser473) expression for up to 72 h compared with the control; in contrast, decreased pAkt expression was noted for less than 24 h with PKI-402. Simultaneous treatment with PF-04691502 and XRT did not induce apoptosis in NET cells; however, the addition of PF-04691502 48 h after XRT significantly increased apoptosis compared to PF-04691502 or XRT treatment alone. Our results demonstrate that schedule-dependent administration of a PI3K/mTOR inhibitor, combined with XRT, can enhance cytotoxicity by promoting the radiosensitivity of NET cells. Moreover, our findings suggest that radiotherapy, in combination with timed PI3K/mTOR inhibition, may be a promising therapeutic regimen for patients with GEP-NET.
Collapse
|
8
|
Chen Q, Carlton D, Howard TJ, Izumi T, Rong Y. Technical Note: Vendor miscalibration of preclinical orthovoltage irradiator identified through independent output check. Med Phys 2020; 48:881-889. [PMID: 33283893 DOI: 10.1002/mp.14642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Accurate radiation dosimetry in radiobiological experiments is crucial for preclinical research in advancement of cancer treatment. Vendors of cell irradiators often perform calibration for end-users. However, calibration accuracy remains unclear due to missing detailed information on calibration equipment and procedures. In this study, we report our findings of a vender miscalibration of the radiation output and our investigation on the root cause of the discrepancy. METHODS Independent calibration verification for a commercial preclinical orthovoltage irradiator was conducted. Initially, in the absence of ionization chambers calibrated at kV energy, radiochromic films (EBT3) was first calibrated at MV energy. Energy correction factors from literature were used to create an in-house kV dosimetry system. The miscalibration identified with the in-house kV EBT3 dosimetry was later confirmed by ADCL calibrated ionization chambers (Exradin A1SL and PTW 30013) at kV energy. Ionization chambers were suspended in-air following TG-61 recommendation for output calibration. To investigate the root cause of the miscalibration, additional measurements were performed with ionization chambers placed on the shelf. A validated Monte Carlo simulation code was also used to investigate the impact of placing the ionization chamber on the shelf instead of suspending it in air during the vendor-performed calibration process. RESULTS Up to a 6% dosimetry error was observed when comparing the vendor calibrated output of the preclinical irradiator with our independent calibration check. Further investigation showed incorrect setups in the vendor's calibration procedure which may result in dose errors up to 11% from the backscatter of the shelf board during calibration, and up to 5% from omitting temperature and pressure corrections to ionization chamber readings. CONCLUSION Our study revealed large dose calibration errors caused by incorrect setup and the omission of temperature/pressure correction in the vendor's calibration procedure. The findings also highlighted the importance of performing an independent check of the dose calibration for preclinical kV irradiators. More absolute dosimetry training is needed for both vendors and end users for establishing accurate absolute dosimetry.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Drew Carlton
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Thaddeus J Howard
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA.,Department of Radiation Oncology, Texas Oncology, Dallas, TX, 75231, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| |
Collapse
|
9
|
Johnson J, Chow Z, Napier D, Lee E, Weiss HL, Evers BM, Rychahou P. Targeting PI3K and AMPKα Signaling Alone or in Combination to Enhance Radiosensitivity of Triple Negative Breast Cancer. Cells 2020; 9:cells9051253. [PMID: 32438621 PMCID: PMC7291172 DOI: 10.3390/cells9051253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is characterized by poor survival. Radiotherapy plays an important role in treating TNBC. The purpose of this study was to determine whether inhibiting the AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) pathways alone or in combination potentiates radiotherapy in TNBC. AMPKα1 and AMPKα2 knockdown diminished cyclin D1 expression and induced G1 cell cycle arrest but did not induce apoptosis alone or in combination with radiotherapy. Next, we analyzed the role of PI3K p85α, p85β, p110α, p110β, Akt1, and Akt2 proteins on TNBC cell cycle progression and apoptosis induction. Akt1 and p110α knockdown diminished cyclin D1 expression and induced apoptosis. Silencing Akt1 promoted synergistic apoptosis induction during radiotherapy and further reduced survival after radiation. Treatment with the Akt inhibitor, MK-2206 48 h after radiotherapy decreased Akt1 levels and potentiated radiation-induced apoptosis. Together, our results demonstrate that AMPKα, p110α, and Akt1 promote TNBC proliferation and that Akt1 is a key regulator of radiosensitivity in TNBC. Importantly, combining radiotherapy with the pharmacological inhibition of Akt1 expression is a potentially promising approach for the treatment of TNBC.
Collapse
Affiliation(s)
- Jeremy Johnson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zeta Chow
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-85-9-323-9285
| |
Collapse
|
10
|
Rajab Bolookat E, Malhotra H, Rich LJ, Sexton S, Curtin L, Spernyak JA, Singh AK, Seshadri M. Development and Validation of a Clinically Relevant Workflow for MR-Guided Volumetric Arc Therapy in a Rabbit Model of Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12030572. [PMID: 32121562 PMCID: PMC7139631 DOI: 10.3390/cancers12030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
There is increased interest in the use of magnetic resonance imaging (MRI) for guiding radiation therapy (RT) in the clinical setting. In this regard, preclinical studies can play an important role in understanding the added value of MRI in RT planning. In the present study, we developed and validated a clinically relevant integrated workflow for MRI-guided volumetric arc therapy (VMAT) in a VX2 rabbit neck tumor model of HNSCC. In addition to demonstrating safety and feasibility, we examined the therapeutic impact of MR-guided VMAT using a single high dose to obtain proof-of-concept and compared the response to conventional 2D-RT. Contrast-enhanced MRI (CE-MRI) provided excellent soft tissue contrast for accurate tumor segmentation for VMAT. Notably, MRI-guided RT enabled improved tumor targeting ability and minimal dose to organs at risk (OAR) compared to 2D-RT, which resulted in notable morbidity within a few weeks of RT. Our results highlight the value of integrating MRI into the workflow for VMAT for improved delineation of tumor anatomy and optimal treatment planning. The model combined with the multimodal imaging approach can serve as a valuable platform for the conduct of preclinical RT trials.
Collapse
Affiliation(s)
- Eftekhar Rajab Bolookat
- Laboratory for Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.R.B.); (L.J.R.)
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
| | - Harish Malhotra
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Laurie J. Rich
- Laboratory for Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.R.B.); (L.J.R.)
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (L.C.)
| | - Leslie Curtin
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (L.C.)
| | - Joseph A. Spernyak
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Mukund Seshadri
- Laboratory for Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.R.B.); (L.J.R.)
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
- Department of Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
11
|
Poirier Y, Johnstone CD, Anvari A, Brodin NP, Santos MD, Bazalova-Carter M, Sawant A. A failure modes and effects analysis quality management framework for image-guided small animal irradiators: A change in paradigm for radiation biology. Med Phys 2020; 47:2013-2022. [PMID: 31986221 DOI: 10.1002/mp.14049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Image-guided small animal irradiators (IGSAI) are increasingly being adopted in radiation biology research. These animal irradiators, designed to deliver radiation with submillimeter accuracy, exhibit complexity similar to that of clinical radiation delivery systems, including image guidance, robotic stage motion, and treatment planning systems. However, physics expertise and resources are scarcer in radiation biology, which makes implementation of conventional prescriptive QA infeasible. In this study, we apply the failure modes and effect analysis (FMEA) popularized by the AAPM task group 100 (TG-100) report to IGSAI and radiation biological research. METHODS Radiation biological research requires a change in paradigm where small errors to large populations of animals are more severe than grievous errors that only affect individuals. To this end, we created a new adverse effects severity table adapted to radiation biology research based on the original AAPM TG-100 severity table. We also produced a process tree which outlines the main components of radiation biology studies performed on an IGSAI, adapted from the original clinical IMRT process tree from TG-100. Using this process tree, we created and distributed a preliminary survey to eight expert IGSAI operators in four institutions. Operators rated proposed failure modes for occurrence, severity, and lack of detectability, and were invited to share their own experienced failure modes. Risk probability numbers (RPN) were calculated and used to identify the failure modes which most urgently require intervention. RESULTS Surveyed operators indicated a number of high (RPN >125) failure modes specific to small animal irradiators. Errors due to equipment breakdown, such as loss of anesthesia or thermal control, received relatively low RPN (12-48) while errors related to the delivery of radiation dose received relatively high RPN (72-360). Errors identified could either be improved by manufacturer intervention (e.g., electronic interlocks for filter/collimator) or physics oversight (errors related to tube calibration or treatment planning system commissioning). Operators identified a number of failure modes including collision between the collimator and the stage, misalignment between imaging and treatment isocenter, inaccurate robotic stage homing/translation, and incorrect SSD applied to hand calculations. These were all relatively highly rated (90-192), indicating a possible bias in operators towards reporting high RPN failure modes. CONCLUSIONS The first FMEA specific to radiation biology research was applied to image-guided small animal irradiators following the TG-100 methodology. A new adverse effects severity table and a process tree recognizing the need for a new paradigm were produced, which will be of great use to future investigators wishing to pursue FMEA in radiation biology research. Future work will focus on expanding scope of user surveys to users of all commercial IGSAI and collaborating with manufacturers to increase the breadth of surveyed expert operators.
Collapse
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Daniel Johnstone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Akbar Anvari
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Morgane Dos Santos
- Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|