1
|
Jiang J, Xiao Y, Liu J, Cui L, Shao W, Hao S, Xu G, Fu Y, Hu C. T1 mapping-based radiomics in the identification of histological types of lung cancer: a reproducibility and feasibility study. BMC Med Imaging 2024; 24:308. [PMID: 39543517 DOI: 10.1186/s12880-024-01487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND T1 mapping can quantify the longitudinal relaxation time of tissues. This study aimed to investigate the repeatability and reproducibility of T1 mapping radiomics features of lung cancer and the feasibility of T1 mapping-based radiomics model to predict its pathological types. METHODS The chest T1 mapping images and clinical characteristics of 112 lung cancer patients (54 with adenocarcinoma and 58 with other types of lung cancer) were collected retrospectively. 54 patients underwent twice short-term T1 mapping scans. Regions of interest were manually delineated on T1 mapping pseudo-color images to measure the mean native T1 values of lung cancer, and radiomics features were extracted using the semi-automatic segmentation method by two independent observers. The patients were randomly divided into training group (77 cases) and validation group (35 cases) with the ratio of 7:3. Interclass correlation coefficients (ICCs), Student's t-test or Mann-Whitney U tests and least absolute shrinkage and selection operator (LASSO) were used for feature selection. The optimum features were selected to establish a logistic regression (LR) radiomics model. Independent sample t-test, Mann Whitney U-test or chi square test were used to compare the differences of clinical characteristics and T1 values. Performance was compared by the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS In the training group, smoking history, lesion type and native T1 values were different between adenocarcinoma and non-adenocarcinoma patients (P = 0.004-0.038). There were 1035 (54.30%) radiomics features meet the intra-and inter-observer, and test-retest reproducibility with ICC > 0.80. After feature dimensionality reduction and model construction, the AUC of T1 mapping-based radiomics model for predicting the pathological types of lung cancer was 0.833 and 0.843, respectively, in the training and validation cohorts. The AUCs of T1 value and clinical model (including smoking history and lesion type) were 0.657 and 0.692 in the training group, and 0.722 and 0.686 in the validation group. Combined with T1 mapping radiomics, clinical model and T1 value to establish a combined model, the prediction efficiency was further improved to 0.895 and 0.915 in the training and validation groups. CONCLUSIONS About 50% of the T1 mapping-based radiomics features displayed relatively poor repeatability and reproducibility. While T1 mapping-based radiomics model is valuable in identification of histological types of lung cancer despite the measurement variability. Combination of T1 mapping radiomics model, clinical characteristics and native T1 value can improve the predictive value of pathological types of lung cancer.
Collapse
Affiliation(s)
- Jianqin Jiang
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yulong West Road No. 166, Yancheng, 224001, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street No. 188, Suzhou, 215002, China
| | - Yong Xiao
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yulong West Road No. 166, Yancheng, 224001, China
| | - Jia Liu
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang North Road No. 6, Nantong, 226001, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Haierxiang North Road No. 6, Nantong, 226001, China
| | - Weiwei Shao
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yulong West Road No. 166, Yancheng, 224001, China
| | - Shaowei Hao
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd, Haiyang West Road No. 399, Shanghai, 200000, China
| | - Gaofeng Xu
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yulong West Road No. 166, Yancheng, 224001, China
| | - Yigang Fu
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yulong West Road No. 166, Yancheng, 224001, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street No. 188, Suzhou, 215002, China.
- Institute of Medical Imaging, Soochow University, Shizi Street No. 1, Suzhou, 215002, China.
| |
Collapse
|
2
|
Teng X, Wang Y, Nicol AJ, Ching JCF, Wong EKY, Lam KTC, Zhang J, Lee SWY, Cai J. Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI. Diagnostics (Basel) 2024; 14:1835. [PMID: 39202322 PMCID: PMC11353986 DOI: 10.3390/diagnostics14161835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.
Collapse
Affiliation(s)
- Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Yongqiang Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Alexander James Nicol
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jerry Chi Fung Ching
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Edwin Ka Yiu Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Kenneth Tsz Chun Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Shara Wee-Yee Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (X.T.); (Y.W.); (A.J.N.); (J.C.F.C.); (E.K.Y.W.); (K.T.C.L.); (J.Z.)
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Bortolotto C, Pinto A, Brero F, Messana G, Cabini RF, Postuma I, Robustelli Test A, Stella GM, Galli G, Mariani M, Figini S, Lascialfari A, Filippi AR, Bottinelli OM, Preda L. CT and MRI radiomic features of lung cancer (NSCLC): comparison and software consistency. Eur Radiol Exp 2024; 8:71. [PMID: 38880866 PMCID: PMC11180643 DOI: 10.1186/s41747-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Radiomics is a quantitative approach that allows the extraction of mineable data from medical images. Despite the growing clinical interest, radiomics studies are affected by variability stemming from analysis choices. We aimed to investigate the agreement between two open-source radiomics software for both contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of lung cancers and to preliminarily evaluate the existence of radiomic features stable for both techniques. METHODS Contrast-enhanced CT and MRI images of 35 patients affected with non-small cell lung cancer (NSCLC) were manually segmented and preprocessed using three different methods. Sixty-six Image Biomarker Standardisation Initiative-compliant features common to the considered platforms, PyRadiomics and LIFEx, were extracted. The correlation among features with the same mathematical definition was analyzed by comparing PyRadiomics and LIFEx (at fixed imaging technique), and MRI with CT results (for the same software). RESULTS When assessing the agreement between LIFEx and PyRadiomics across the considered resampling, the maximum statistically significant correlations were observed to be 94% for CT features and 95% for MRI ones. When examining the correlation between features extracted from contrast-enhanced CT and MRI using the same software, higher significant correspondences were identified in 11% of features for both software. CONCLUSIONS Considering NSCLC, (i) for both imaging techniques, LIFEx and PyRadiomics agreed on average for 90% of features, with MRI being more affected by resampling and (ii) CT and MRI contained mostly non-redundant information, but there are shape features and, more importantly, texture features that can be singled out by both techniques. RELEVANCE STATEMENT Identifying and selecting features that are stable cross-modalities may be one of the strategies to pave the way for radiomics clinical translation. KEY POINTS • More than 90% of LIFEx and PyRadiomics features contain the same information. • Ten percent of features (shape, texture) are stable among contrast-enhanced CT and MRI. • Software compliance and cross-modalities stability features are impacted by the resampling method.
Collapse
Affiliation(s)
- Chandra Bortolotto
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Alessandra Pinto
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy.
| | - Francesca Brero
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy
| | - Gaia Messana
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Raffaella Fiamma Cabini
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy.
- Department of Mathematics, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy.
| | - Ian Postuma
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy
| | - Agnese Robustelli Test
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy.
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy.
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, 27100, Italy
| | - Giulia Galli
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, 27100, Italy
| | - Manuel Mariani
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, 27100, Italy
| | - Alessandro Lascialfari
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy
| | - Andrea Riccardo Filippi
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Olivia Maria Bottinelli
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Lorenzo Preda
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
4
|
Zhang H, Fu C, Fan M, Lu L, Chen Y, Liu C, Sun H, Zhao Q, Han D, Li B, Huang W. Reduction of inter-observer variability using MRI and CT fusion in delineating of primary tumor for radiotherapy in lung cancer with atelectasis. Front Oncol 2022; 12:841771. [PMID: 35992838 PMCID: PMC9381816 DOI: 10.3389/fonc.2022.841771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare the difference between magnetic resonance imaging (MRI) and computed tomography (CT) in delineating the target area of lung cancer with atelectasis. Method A retrospective analysis was performed on 15 patients with lung cancer accompanied by atelectasis. All positioning images were transferred to Eclipse treatment planning systems (TPSs). Six MRI sequences (T1WI, T1WI+C, T1WI+C Delay, T1WI+C 10 minutes, T2WI, DWI) were registered with positioning CT. Five radiation oncologists delineated the tumor boundary to obtain the gross tumor volume (GTV). Conformity index (CI) and dice coefficient (DC) were used to measure differences among observers. Results The differences in delineation mean volumes, CI, and DC among CT and MRIs were significant. Multiple comparisons were made between MRI sequences and CT. Among them, DWI, T2WI, and T1WI+C 10 minutes sequences were statistically significant with CT in mean volumes, DC, and CI. The mean volume of DWI, T2WI, and T1WI+C 10 minutes sequence in the target area is significantly smaller than that on the CT sequence, but the consistency is higher than that of CT sequences. Conclusions The recognition of atelectasis by MRI was better than that by CT, which could reduce interobserver variability of primary tumor delineation in lung cancer with atelectasis. Among them, DWI, T2WI, T1WI+C 10 minutes may be a better choice to improve the GTV delineation of lung cancer patients with atelectasis.
Collapse
Affiliation(s)
- Hongjiao Zhang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengrui Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liyong Lu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yiru Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongfu Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dan Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Huang,
| |
Collapse
|
5
|
Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
The use of MRI radiomic models for the diagnosis, prognosis and treatment response prediction of tumors has been increasingly reported in literature. However, its widespread adoption in clinics is hampered by issues related to features stability. In the MRI radiomic workflow, the main factors that affect radiomic features computation can be found in the image acquisition and reconstruction phase, in the image pre-processing steps, and in the segmentation of the region of interest on which radiomic indices are extracted. Deep Neural Networks (DNNs), having shown their potentiality in the medical image processing and analysis field, can be seen as an attractive strategy to partially overcome the issues related to radiomic stability and mitigate their impact. In fact, DNN approaches can be prospectively integrated in the MRI radiomic workflow to improve image quality, obtain accurate and reproducible segmentations and generate standardized images. In this review, DNN methods that can be included in the image processing steps of the radiomic workflow are described and discussed, in the light of a detailed analysis of the literature in the context of MRI radiomic reliability.
Collapse
|
6
|
Tang X, Huang H, Du P, Wang L, Yin H, Xu X. Intratumoral and peritumoral CT-based radiomics strategy reveals distinct subtypes of non-small-cell lung cancer. J Cancer Res Clin Oncol 2022; 148:2247-2260. [DOI: 10.1007/s00432-022-04015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
|
7
|
Carbonell G, Kennedy P, Bane O, Kirmani A, El Homsi M, Stocker D, Said D, Mukherjee P, Gevaert O, Lewis S, Hectors S, Taouli B. Precision of MRI radiomics features in the liver and hepatocellular carcinoma. Eur Radiol 2022; 32:2030-2040. [PMID: 34564745 DOI: 10.1007/s00330-021-08282-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To assess the precision of MRI radiomics features in hepatocellular carcinoma (HCC) tumors and liver parenchyma. METHODS The study population consisted of 55 patients, including 16 with untreated HCCs, who underwent two repeat contrast-enhanced abdominal MRI exams within 1 month to evaluate: (1) test-retest repeatability using the same MRI system (n = 28, 10 HCCs); (2) inter-platform reproducibility between different MRI systems (n = 27, 6 HCCs); (3) inter-observer reproducibility (n = 16, 16 HCCs). Shape and 1st- and 2nd-order radiomics features were quantified on pre-contrast T1-weighted imaging (WI), T1WI portal venous phase (pvp), T2WI, and ADC (apparent diffusion coefficient), on liver regions of interest (ROIs) and HCC volumes of interest (VOIs). Precision was assessed by calculating intraclass correlation coefficient (ICC), concordance correlation coefficient (CCC), and coefficient of variation (CV). RESULTS There was moderate to excellent test-retest repeatability of shape and 1st- and 2nd-order features for all sequences in HCCs (ICC: 0.53-0.99; CV: 3-29%), and moderate to good test-retest repeatability of 1st- and 2nd-order features for T1WI sequences, and 2nd-order features for T2WI in the liver (ICC: 0.53-0.73; CV: 12-19%). There was poor inter-platform reproducibility for all features and sequences, except for shape and 1st-order features on T1WI in HCCs (CCC: 0.58-0.99; CV: 3-15%). Good to excellent inter-observer reproducibility was found for all features and sequences in HCCs (CCC: 0.80-0.99; CV: 4-15%) and moderate to good for liver (CCC: 0.45-0.86; CV: 6-25%). CONCLUSIONS MRI radiomics features have acceptable repeatability in the liver and HCC when using the same MRI system and across readers but have low reproducibility across MR systems, except for shape and 1st-order features on T1WI. Data must be interpreted with caution when performing multiplatform radiomics studies. KEY POINTS • MRI radiomics features have acceptable repeatability when using the same MRI system but less reproducible when using different MRI platforms. • MRI radiomics features extracted from T1 weighted-imaging show greater stability across exams than T2 weighted-imaging and ADC. • Inter-observer reproducibility of MRI radiomics features was found to be good in HCC tumors and acceptable in liver parenchyma.
Collapse
Affiliation(s)
- Guillermo Carbonell
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, University Hospital Virgen de La Arrixaca, Murcia, Spain
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ammar Kirmani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria El Homsi
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Stocker
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Said
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Universidad de los Andes, Santiago, Chile
| | | | - Olivier Gevaert
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefanie Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Jensen LJ, Kim D, Elgeti T, Steffen IG, Hamm B, Nagel SN. Differentiation of Pulmonary Lymphoma Manifestations and Nonlymphoma Infiltrates in Possible Invasive Fungal Disease Using Fast T1-weighted Magnetic Resonance Imaging at 3 T Comparison of Texture Analysis, Mapping, and Signal Intensity Quotients. J Thorac Imaging 2022; 37:80-89. [PMID: 34269753 DOI: 10.1097/rti.0000000000000606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to evaluate the diagnostic performance of texture analysis (TA), T1 mapping, and signal intensity quotients derived from fast T1-weighted gradient echo (T1w GRE) sequences for differentiating pulmonary lymphoma manifestations and nonlymphoma infiltrates in possible invasive fungal disease in immunocompromised hematological patients. MATERIALS AND METHODS Twenty patients with hematologic malignancies and concomitant immunosuppression (including 10 patients with pulmonary lymphoma manifestations and 10 patients with nonlymphoma infiltrates) prospectively underwent 3 T magnetic resonance imaging using a conventional T1w GRE sequence and a T1w GRE mapping sequence with variable flip angle. A region of interest was placed around the most representative lesion in each patient. TA was performed using PyRadiomics. T1 relaxation times were extracted from precompiled maps and calculated manually. Signal intensity quotients (lesion/muscle) were calculated from conventional T1w GRE sequences. RESULTS Of all TA features, variance, mean absolute deviation, robust mean absolute deviation, interquartile range, and minimum were significantly different between the 2 entities (P<0.05), with excellent diagnostic performance in receiver operating characteristic analysis (area under the curve [AUC] >80%). Neither T1 relaxation times from precompiled maps (AUC=63%; P=0.353) nor manual calculation (AUC=63%; P=0.353) nor signal intensity quotients (AUC=70%; P=0.143) yielded significant differences. CONCLUSIONS TA from fast T1w GRE images can differentiate pulmonary lymphoma manifestations and nonlymphoma infiltrates in possible invasive fungal disease with excellent diagnostic performance using the TA features variance, mean absolute deviation, robust mean absolute deviation, interquartile range, and minimum. Combining a fast T1w GRE sequence with TA seems to be a promising tool to differentiate these 2 entities noninvasively.
Collapse
Affiliation(s)
| | | | - Thomas Elgeti
- Pediatric Radiology, Charité University Medicine Berlin, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
10
|
Yu Q, Liu J, Lin H, Lei P, Fan B. Application of Radiomics Model of CT Images in the Identification of Ureteral Calculus and Phlebolith. Int J Clin Pract 2022; 2022:5478908. [PMID: 36474549 PMCID: PMC9678460 DOI: 10.1155/2022/5478908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the clinical application of the three-dimensional (3D) radiomics model of the CT image in the diagnosis and identification of ureteral calculus and phlebolith. METHOD Sixty-one cases of ureteral calculus and 61 cases of phlebolith were retrospectively investigated. The enrolled patients were randomly categorized into the training set (n = 86) and the testing set (n = 36) with a ratio of 7 : 3. The plain CT scan images of all samples were manually segmented by the ITK-SNAP software, followed by radiomics analysis through the Analysis Kit software. A total of 1316 texture features were extracted. Then, the maximum correlation minimum redundancy criterion and the least absolute shrinkage and selection operator algorithm were used for texture feature selection. The feature subset with the most predictability was selected to establish the 3D radiomics model. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) was also calculated. Additionally, the decision curve was used to evaluate the clinical application of the model. RESULTS The 10 selected radiomics features were significantly related to the identification and diagnosis of ureteral calculus and phlebolith. The radiomics model showed good identification efficiency for ureteral calculus and phlebolith in the training set (AUC = 0.98; 95%CI: 0.96-1.00) and testing set (AUC = 0.98; 95%CI: 0.95-1.00). The decision curve thus demonstrated the clinical application of the radiomics model. CONCLUSIONS The 3D radiomics model based on plain CT scan images indicated good performance in the identification and prediction of ureteral calculus and phlebolith and was expected to provide an effective detection method for clinical diagnosis.
Collapse
Affiliation(s)
- Qiuyue Yu
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Jiaqi Liu
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha 410005, China
| | - Pinggui Lei
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| |
Collapse
|
11
|
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review. Clin Oncol (R Coll Radiol) 2021; 34:e107-e122. [PMID: 34763965 DOI: 10.1016/j.clon.2021.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.
Collapse
|
12
|
Reiazi R, Abbas E, Famiyeh P, Rezaie A, Kwan JYY, Patel T, Bratman SV, Tadic T, Liu FF, Haibe-Kains B. The impact of the variation of imaging parameters on the robustness of Computed Tomography radiomic features: A review. Comput Biol Med 2021; 133:104400. [PMID: 33930766 DOI: 10.1016/j.compbiomed.2021.104400] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The field of radiomics is at the forefront of personalized medicine. However, there is concern that high variation in imaging parameters will impact robustness of radiomic features and subsequently the performance of the predictive models built upon them. Therefore, our review aims to evaluate the impact of imaging parameters on the robustness of radiomic features. We also provide insights into the validity and discrepancy of different methodologies applied to investigate the robustness of radiomic features. We selected 47 papers based on our predefined inclusion criteria and grouped these papers by the imaging parameter under investigation: (i) scanner parameters, (ii) acquisition parameters and (iii) reconstruction parameters. Our review highlighted that most of the imaging parameters are disruptive parameters, and shape along with First order statistics were reported as the most robust radiomic features against variation in imaging parameters. This review identified inconsistencies related to the methodology of the reviewed studies such as the metrics used for robustness, the feature extraction techniques, the reporting style, and their outcome inclusion. We hope this review will aid the scientific community in conducting research in a way that is more reproducible and avoids the pitfalls of previous analyses.
Collapse
Affiliation(s)
- Reza Reiazi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Engy Abbas
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Petra Famiyeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aria Rezaie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Y Y Kwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tirth Patel
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Tony Tadic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; Vector Institute, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
McHugh DJ, Porta N, Little RA, Cheung S, Watson Y, Parker GJM, Jayson GC, O’Connor JPB. Image Contrast, Image Pre-Processing, and T 1 Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases. Cancers (Basel) 2021; 13:E240. [PMID: 33440685 PMCID: PMC7826650 DOI: 10.3390/cancers13020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/25/2023] Open
Abstract
Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T1- and T2-weighted images, pre-contrast quantitative T1 maps (qT1), and contrast-enhanced T1-weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box-Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from 0.30 to 0.99, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T1- and T2-weighted images, and decrease ICCs for qT1 maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context.
Collapse
Affiliation(s)
- Damien J. McHugh
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London SW3 6JB, UK;
| | - Ross A. Little
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Susan Cheung
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Yvonne Watson
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK;
- Bioxydyn Ltd., Manchester M15 6SZ, UK
| | - Gordon C. Jayson
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Department of Medical Oncology, The Christie Hospital, Manchester M20 4BX, UK
| | - James P. B. O’Connor
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, The Christie Hospital, Manchester M20 4BX, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
14
|
Hu N, Yin S, Li Q, He H, Zhong L, Gong NJ, Guo J, Cai P, Xie C, Liu H, Qiu B. Evaluating Heterogeneity of Primary Lung Tumor Using Clinical Routine Magnetic Resonance Imaging and a Tumor Heterogeneity Index. Front Oncol 2021; 10:591485. [PMID: 33542900 PMCID: PMC7853693 DOI: 10.3389/fonc.2020.591485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Objective To improve the assessment of primary tumor heterogeneity in magnetic resonance imaging (MRI) of non-small cell lung cancer (NSCLC), we proposed a method using basic measurements from T1- and T2-weighted MRI. Methods One hundred and four NSCLC patients with different T stages were studied. Fifty-two patients were analyzed as training group and another 52 as testing group. The ratios of standard deviation (SD)/mean signal value of primary tumor from T1-weighted (T1WI), T1-enhanced (T1C), T2-weighted (T2WI), and T2 fat suppression (T2fs) images were calculated. In the training group, correlation analyses were performed between the ratios and T stages. Then an ordinal regression model was built to generate the tumor heterogeneous index (THI) for evaluating the heterogeneity of tumor. The model was validated in the testing group. Results There were 11, 32, 40, and 21 patients with T1, T2, T3, and T4 disease, respectively. In the training group, the median SD/mean on T1WI, T1C, T2WI, and T2fs sequences was 0.11, 0.19, 0.16, and 0.15 respectively. The SD/mean on T1C (p=0.003), T2WI (p=0.000), and T2fs sequences (p=0.002) correlated significantly with T stages. Patients with more advanced T stage showed higher SD/mean on T2-weighted, T2fs, and T1C sequences. The median THI in the training group was 2.15. THI correlated with T stage significantly (p=0.000). In the testing group, THI was also significantly related to T stages (p=0.001). Higher THI had relevance to more advanced T stage. Conclusions The proposed ratio measurements and THI based on MRI can serve as functional radiomic markers that correlated with T stages for evaluating heterogeneity of lung tumors.
Collapse
Affiliation(s)
- Nan Hu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Guangdong Association Study of Thoracic Oncology, Guangzhou, China
| | - ShaoHan Yin
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiwen Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Guangdong Association Study of Thoracic Oncology, Guangzhou, China
| | - Haoqiang He
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Linchang Zhong
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Nan-Jie Gong
- Vector Lab for Intelligent Medical Imaging and Neural Engineering, International Innovation Center of Tsinghua University, Shanghai, China
| | - Jinyu Guo
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Guangdong Association Study of Thoracic Oncology, Guangzhou, China
| | - Peiqiang Cai
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuanmiao Xie
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Guangdong Association Study of Thoracic Oncology, Guangzhou, China
| | - Bo Qiu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, Guangdong Association Study of Thoracic Oncology, Guangzhou, China
| |
Collapse
|
15
|
Bortolotto C, Lancia A, Stelitano C, Montesano M, Merizzoli E, Agustoni F, Stella G, Preda L, Filippi AR. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev Anticancer Ther 2020; 21:257-266. [PMID: 33216651 DOI: 10.1080/14737140.2021.1852935] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Radiomics extracts a large amount of quantitative information from medical images using specific data characterization algorithms. This information, called radiomic features, can be combined with clinical data to build prediction models for prognostic evaluation and treatment selection.Areas covered: We outlined a series of studies investigating the correlation between radiomics features and outcome (prognostic) as well as response to therapy (predictive) in non-small cell lung cancer (NSCLC). We performed our analysis both in the setting of early and advanced stage of disease, with a focus on the different therapies and imaging modalities adopted.Expert opinion: The prognostic and predictive potential of the radiomic approach, combined with clinical models, could help decision-making process and guide toward the creation of an optimal and 'tailored' therapeutic strategy for lung cancer patients. However, due to the low reproducibility of most of the conducted studies and the lack of validated results, such a desirable scenario has not yet been translated to routine clinical practice.
Collapse
Affiliation(s)
| | - Andrea Lancia
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Stelitano
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Montesano
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Merizzoli
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Giulia Stella
- Respiratory Disease Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Preda
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
16
|
Simpson G, Ford JC, Llorente R, Portelance L, Yang F, Mellon EA, Dogan N. Impact of quantization algorithm and number of gray level intensities on variability and repeatability of low field strength magnetic resonance image-based radiomics texture features. Phys Med 2020; 80:209-220. [PMID: 33190077 DOI: 10.1016/j.ejmp.2020.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of this work was to investigate the impact of quantization preprocessing parameter selection on variability and repeatability of texture features derived from low field strength magnetic resonance (MR) images. METHODS Texture features were extracted from low field strength images of a daily image QA phantom with four texture inserts. Feature variability over time was quantified using all combinations of three quantization algorithms and four different numbers of gray level intensities. In addition, texture features were extracted using the same combinations from the low field strength MR images of the gross tumor volume (GTV) and left kidney of patients with repeated set up scans. The impact of region of interest (ROI) preprocessing on repeatability was investigated with a test-retest study design. RESULTS The phantom ROIs quantized to 64 Gy level intensities using the histogram equalization method resulted in the greatest number of features with the least variability. There was no clear method that resulted in the highest repeatability in the GTV or left kidney. However, eight texture features extracted from the GTV were repeatable regardless of ROI processing combination. CONCLUSION Low field strength MR images can provide a stable basis for texture analysis with ROIs quantized to 64 Gy levels using histogram equalization, but there is no clear optimal combination for repeatability.
Collapse
Affiliation(s)
- Garrett Simpson
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Ricardo Llorente
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Lorraine Portelance
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Fei Yang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA.
| |
Collapse
|
17
|
Masokano IB, Liu W, Xie S, Marcellin DFH, Pei Y, Li W. The application of texture quantification in hepatocellular carcinoma using CT and MRI: a review of perspectives and challenges. Cancer Imaging 2020; 20:67. [PMID: 32962762 PMCID: PMC7510095 DOI: 10.1186/s40644-020-00341-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, radiomic texture quantification of tumors has received much attention from radiologists, scientists, and stakeholders because several results have shown the feasibility of using the technique to diagnose and manage oncological conditions. In patients with hepatocellular carcinoma, radiomics has been applied in all stages of tumor evaluation, including diagnosis and characterization of the genotypic behavior of the tumor, monitoring of treatment responses and prediction of various clinical endpoints. It is also useful in selecting suitable candidates for specific treatment strategies. However, the clinical validation of hepatocellular carcinoma radiomics is limited by challenges in imaging protocol and data acquisition parameters, challenges in segmentation techniques, dimensionality reduction, and modeling methods. Identification of the best segmentation and optimal modeling methods, as well as texture features most stable to imaging protocol variability would go a long way in harmonizing HCC radiomics for personalized patient care. This article reviews the process of HCC radiomics, its clinical applications, associated challenges, and current optimization strategies.
Collapse
Affiliation(s)
- Ismail Bilal Masokano
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Simin Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11:91. [PMID: 32785796 PMCID: PMC7423816 DOI: 10.1186/s13244-020-00887-2] [Citation(s) in RCA: 592] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical "how-to" guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
19
|
Simpson G, Spieler B, Dogan N, Portelance L, Mellon EA, Kwon D, Ford JC, Yang F. Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: A pilot study. Med Phys 2020; 47:3682-3690. [DOI: 10.1002/mp.14200] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett Simpson
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| | - Benjamin Spieler
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| | - Nesrin Dogan
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| | | | - Eric A. Mellon
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| | - Deukwoo Kwon
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| | - John C. Ford
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| | - Fei Yang
- Department of Radiation Oncology University of Miami Miami FL 33136 USA
| |
Collapse
|
20
|
Lacroix M, Frouin F, Dirand AS, Nioche C, Orlhac F, Bernaudin JF, Brillet PY, Buvat I. Correction for Magnetic Field Inhomogeneities and Normalization of Voxel Values Are Needed to Better Reveal the Potential of MR Radiomic Features in Lung Cancer. Front Oncol 2020; 10:43. [PMID: 32083003 PMCID: PMC7006432 DOI: 10.3389/fonc.2020.00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose: To design and validate a preprocessing procedure dedicated to T2-weighted MR images of lung cancers so as to improve the ability of radiomic features to distinguish between adenocarcinoma and other histological types. Materials and Methods: A discovery set of 52 patients with advanced lung cancer who underwent T2-weighted MR imaging at 3 Tesla in a single center study from August 2017 to May 2019 was used. Findings were then validated using a validation set of 19 additional patients included from May to October 2019. Tumor type was obtained from the pathology report after trans-thoracic needle biopsy, metastatic lymph node or metastasis samples, or surgical excisions. MR images were preprocessed using N4ITK bias field correction and by normalizing voxel intensities with fat as a reference region. Segmentation and extraction of radiomic features were performed with LIFEx software on the raw images, on the N4ITK-corrected images and on the fully preprocessed images. Two analyses were conducted where radiomic features were extracted: (1) from the whole tumor volume (3D analysis); (2) from all slices encompassing the tumor (2D analysis). Receiver operating characteristic (ROC) analysis was used to identify features that could distinguish between adenocarcinoma and other histological types. Sham experiments were also designed to control the number of false positive findings. Results: There were 31 (12) adenocarcinomas and 21 (7) other histological types in the discovery (validation) set. In 2D, preprocessing increased the number of discriminant radiomic features from 8 without preprocessing to 22 with preprocessing. 2D analysis yielded more features able to identify adenocarcinoma than 3D analysis (12 discriminant radiomic features after preprocessing in 3D). Preprocessing did not increase false positive findings as no discriminant features were identified in any of the sham experiments. The greatest sensitivity of the 2D analysis applied to preprocessed data was confirmed in the validation set. Conclusion: Correction for magnetic field inhomogeneities and normalization of voxel values are essential to reveal the full potential of radiomic features to identify the tumor histological type from MR T2-weighted images, with classification performance similar to those reported in PET/CT and in multiphase CT in lung cancers.
Collapse
Affiliation(s)
- Maxime Lacroix
- Service d'Imagerie Médicale, AP-HP, Hôpital Avicenne, Bobigny, France.,Laboratoire IMIV, UMR 1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Université Paris Saclay, Orsay, France
| | - Frédérique Frouin
- Laboratoire IMIV, UMR 1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Université Paris Saclay, Orsay, France
| | - Anne-Sophie Dirand
- Laboratoire IMIV, UMR 1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Université Paris Saclay, Orsay, France
| | - Christophe Nioche
- Laboratoire IMIV, UMR 1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Université Paris Saclay, Orsay, France
| | - Fanny Orlhac
- Laboratoire IMIV, UMR 1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Université Paris Saclay, Orsay, France
| | | | | | - Irène Buvat
- Laboratoire IMIV, UMR 1023 Inserm-CEA-Université Paris Sud, ERL 9218 CNRS, Université Paris Saclay, Orsay, France
| |
Collapse
|
21
|
Tang X, Xu X, Han Z, Bai G, Wang H, Liu Y, Du P, Liang Z, Zhang J, Lu H, Yin H. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer. Biomed Eng Online 2020; 19:5. [PMID: 31964407 PMCID: PMC6975040 DOI: 10.1186/s12938-019-0744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-invasive discrimination between lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes of non-small-cell lung cancer (NSCLC) could be very beneficial to the patients unfit for the invasive diagnostic procedures. The aim of this study was to investigate the feasibility of utilizing the multimodal magnetic resonance imaging (MRI) radiomics and clinical features in classifying NSCLC. This retrospective study involved 148 eligible patients with postoperative pathologically confirmed NSCLC. The study was conducted in three steps: (1) feature extraction was performed using the online freely available package with the multimodal MRI data; (2) feature selection was performed using the Student's t test and support vector machine (SVM)-based recursive feature elimination method with the training cohort (n = 100), and the performance of these selected features was evaluated using both the training and the validation cohorts (n = 48) with a non-linear SVM classifier; (3) a Radscore model was then generated using logistic regression algorithm; (4) Integrating the Radscore with the semantic clinical features, a radiomics-clinical nomogram was developed, and its overall performance was evaluated with both cohorts. RESULTS Thirteen optimal features achieved favorable discrimination performance with both cohorts, with area under the curve (AUC) of 0.819 and 0.824, respectively. The radiomics-clinical nomogram integrating the Radscore with the independent clinical predictors exhibited more favorable discriminative power, with AUC improved to 0.901 and 0.872 in both cohorts, respectively. The Hosmer-Lemeshow test and decision curve analysis results furtherly showed good predictive precision and clinical usefulness of the nomogram. CONCLUSION Non-invasive histological subtype stratification of NSCLC can be done favorably using multimodal MRI radiomics features. Integrating the radiomics features with the clinical features could further improve the performance of the histological subtype stratification in patients with NSCLC.
Collapse
Affiliation(s)
- Xing Tang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiaopan Xu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhiping Han
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Guoyan Bai
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yang Liu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Peng Du
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhengrong Liang
- Departments of Radiology, School of Computer Science and Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|