1
|
Kong W, Huiskes M, Habraken SJM, Astreinidou E, Rasch CRN, Heijmen BJM, Breedveld S. Reducing the lateral dose penumbra in IMPT by incorporating transmission pencil beams. Radiother Oncol 2024; 198:110388. [PMID: 38897315 DOI: 10.1016/j.radonc.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE In intensity-modulated proton therapy (IMPT), Bragg peaks result in steep distal dose fall-offs, while the lateral IMPT dose fall-off is often less steep than in photon therapy. High-energy pristine transmission ('shoot through') pencil beams have no Bragg peak in the patient, but show a sharp lateral penumbra at the target level. We investigated whether combining Bragg peaks with Transmission pencil beams ('IMPT&TPB') could improve head-and-neck plans by exploiting the steep lateral dose fall-off of transmission pencil beams. APPROACH Our system for automated multi-criteria IMPT plan optimisation was extended for combined optimisation of BPs and TPBs. The system generates for each patient a Pareto-optimal plan using a generic 'wish-list' with prioritised planning objectives and hard constraints. For eight nasopharynx cancer patients (NPC) and eight oropharynx cancer (OPC) patients, the IMPT&TPB plan was compared to the competing conventional IMPT plan with only Bragg peaks, which was generated with the same optimiser, but without transmission pencil beams. MAIN RESULTS Clinical OAR and target constraints were met in all plans. By allowing transmission pencil beams in the optimisation, on average 14 of the 25 investigated OAR plan parameters significantly improved for NPC, and 9 of the 17 for OPC, while only one OPC parameter showed small but significant deterioration. Non-significant differences were found in the remaining parameters. In NPC, cochlea Dmean reduced by up to 17.5 Gy and optic nerve D2% by up to 11.1 Gy. CONCLUSION Compared to IMPT, IMPT&TPB resulted in comparable target coverage with overall superior OAR sparing, the latter originating from steeper dose fall-offs close to OARs.
Collapse
Affiliation(s)
- W Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - S J M Habraken
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - C R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - B J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Leitão J, Bijman R, Wahab Sharfo A, Brus Y, Rossi L, Breedveld S, Heijmen B. Automated multi-criterial planning with beam angle optimization to establish non-coplanar VMAT class solutions for nasopharyngeal carcinoma. Phys Med 2022; 101:20-27. [PMID: 35853387 DOI: 10.1016/j.ejmp.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE Complexity in selecting optimal non-coplanar beam setups and prolonged delivery times may hamper the use of non-coplanar treatments for nasopharyngeal carcinoma (NPC). Automated multi-criterial planning with integrated beam angle optimization was used to define non-coplanar VMAT class solutions (CSs), each consisting of a coplanar arc and additional 1 or 2 fixed, non-coplanar partial arcs. METHODS Automated planning was used to generate a coplanar VMAT plan with 5 complementary computer-optimized non-coplanar IMRT beams (VMAT+5) for each of the 20 included patients. Subsequently, the frequency distribution of the 100 patient-specific non-coplanar IMRT beam directions was used to select non-coplanar arcs for supplementing coplanar VMAT. A second investigated CS with only one non-coplanar arc consisted of coplanar VMAT plus a partial arc at 90° couch angle (VMATCS90). Plans generated with the two VMATCSs were compared to coplanar VMAT. RESULTS VMAT+5 analysis resulted in VMATCS60: two partial non-coplanar arcs at couch angles 60° and -60° to complement coplanar VMAT. Compared to coplanar VMAT, the non-coplanar VMATCS60 and VMATCS90 yielded substantial average dose reductions in OARs associated with xerostomia and dysphagia, i.e., parotids, submandibular glands, oral cavity and swallowing muscles (p < 0.05) for the same PTV coverage and without violating hard constraints. Impact of non-coplanar treatment and superiority of either VMACS60 and VMATCS90 was highly patient dependent. CONCLUSIONS Compared to coplanar VMAT, dose to OARs was substantially reduced with a CS with one or two non-coplanar arcs. Preferences for coplanar or one or two additional arcs are highly patient-specific, balancing plan quality and treatment time.
Collapse
Affiliation(s)
- Joana Leitão
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Rik Bijman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Abdul Wahab Sharfo
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Yori Brus
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Linda Rossi
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ben Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Schipaanboord BWK, Heijmen BJM, Breedveld S. TBS-BAO: fully automated beam angle optimization for IMRT guided by a total-beam-space reference plan. Phys Med Biol 2022; 67. [PMID: 35026742 DOI: 10.1088/1361-6560/ac4b37] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Properly selected beam angles contribute to the quality of radiotherapy treatment plans. However, the beam angle optimization (BAO) problem is difficult to solve to optimality due to its non-convex discrete nature with many local minima. In this study, we propose TBS-BAO, a novel approach for solving the BAO problem, and test it for non-coplanar robotic CyberKnife radiotherapy for prostate cancer. First, an ideal Pareto-optimal reference dose distribution is automatically generated usinga priorimulti-criterial fluence map optimization (FMO) to generate a plan that includes all candidate beams (total-beam-space, TBS). Then, this ideal dose distribution is reproduced as closely as possible in a subsequent segmentation/beam angle optimization step (SEG/BAO), while limiting the number of allowed beams to a user-selectable preset value. SEG/BAO aims at a close reproduction of the ideal dose distribution. For each of 33 prostate SBRT patients, 18 treatment plans with different pre-set numbers of allowed beams were automatically generated with the proposed TBS-BAO. For each patient, the TBS-BAO plans were then compared to a plan that was automatically generated with an alternative BAO method (Erasmus-iCycle) and to a high-quality manually generated plan. TBS-BAO was able to automatically generate plans with clinically feasible numbers of beams (∼25), with a quality highly similar to corresponding 91-beam ideal reference plans. Compared to the alternative Erasmus-iCycle BAO approach, similar plan quality was obtained for 25-beam segmented plans, while computation times were reduced from 10.7 hours to 4.8/1.5 hours, depending on the applied pencil-beam resolution in TBS-BAO. 25-beam TBS-BAO plans had similar quality as manually generated plans with on average 48 beams, while delivery times reduced from 22.3 to 18.4/18.1 min. TBS reference plans could effectively steer the discrete non-convex BAO.
Collapse
Affiliation(s)
- B W K Schipaanboord
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - B J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Schipaanboord BWK, Giżyńska MK, Rossi L, de Vries KC, Heijmen BJM, Breedveld S. Fully automated treatment planning for MLC-based robotic radiotherapy. Med Phys 2021; 48:4139-4147. [PMID: 34037258 PMCID: PMC8457110 DOI: 10.1002/mp.14993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To propose and validate a fully automated multicriterial treatment planning solution for a CyberKnife® equipped with an InCiseTM 2 multileaf collimator. METHODS The AUTO BAO plans are generated using fully automated prioritized multicriterial optimization (AUTO MCO) of pencil-beam fluence maps with integrated noncoplanar beam angle optimization (BAO), followed by MLC segment generation. Both the AUTO MCO and segmentation algorithms have been developed in-house. AUTO MCO generates for each patient a single, high-quality Pareto-optimal IMRT plan. The segmentation algorithm then accurately mimics the AUTO MCO 3D dose distribution, while considering all candidate beams simultaneously, rather than replicating the fluence maps. Pencil-beams, segment dose depositions, and final dose calculations are performed with a stand-alone version of the clinical dose calculation engine. For validation, AUTO BAO plans were generated for 33 prostate SBRT patients and compared to reference plans (REF) that were manually generated with the commercial treatment planning system (TPS), in absence of time pressure. REF plans were also compared to AUTO RB plans, for which fluence map optimization was performed for the beam angle configuration used in the REF plan, and the segmentation could use all these beams or only a subset, depending on the dosimetry. RESULTS AUTO BAO plans were clinically acceptable and dosimetrically similar to REF plans, but had on average reduced numbers of beams ((beams in AUTO BAO)/(beams in REF) (relative improvement): 24.7/48.3 (-49%)), segments (59.5/98.9 (-40%)), and delivery times (17.1/22.3 min. (-23%)). Dosimetry of AUTO RB and REF were also similar, but AUTO RB used on average fewer beams (38.0/48.3 (-21%)) and had on average shorter delivery times (18.6/22.3 min. (-17%)). Delivered Monitor Units (MU) were similar for all three planning approaches. CONCLUSIONS A new, vendor-independent optimization workflow for fully automated generation of deliverable high-quality CyberKnife® plans was proposed, including BAO. Compared to manual planning with the commercial TPS, fraction delivery times were reduced by 5.3 min. (-23%) due to large reductions in beam and segment numbers.
Collapse
Affiliation(s)
- Bastiaan W K Schipaanboord
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Zuid Holland, 3015GD, The Netherlands
| | - Marta K Giżyńska
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Zuid Holland, 3015GD, The Netherlands
| | - Linda Rossi
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Zuid Holland, 3015GD, The Netherlands
| | - Kim C de Vries
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Zuid Holland, 3015GD, The Netherlands
| | - Ben J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Zuid Holland, 3015GD, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Zuid Holland, 3015GD, The Netherlands
| |
Collapse
|
5
|
Hoekstra N, Habraken S, Swaak-Kragten A, Breedveld S, Pignol JP, Hoogeman M. Reducing the Risk of Secondary Lung Cancer in Treatment Planning of Accelerated Partial Breast Irradiation. Front Oncol 2020; 10:1445. [PMID: 33014782 PMCID: PMC7461936 DOI: 10.3389/fonc.2020.01445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose: Adjuvant accelerated partial breast irradiation (APBI) results in low local recurrence risks. However, the survival benefit of adjuvant radiotherapy APBI for low-risk breast cancer might partially be offset by the risk of radiation-induced lung cancer. Reducing the lung dose mitigates this risk, but this could result in higher doses to the ipsilateral breast. Different external beam APBI techniques are equally conformal and homogenous, but the intermediate to low dose distribution differs. Thus, the risk of toxicity is different. The purpose of this study is to quantify the trade-off between secondary lung cancer risk and breast dose in treatment planning and to compare an optimal coplanar and non-coplanar technique. Methods: A total of 440 APBI treatment plans were generated using automated treatment planning for a coplanar VMAT beam-setup and a non-coplanar robotic stereotactic radiotherapy beam-setup. This enabled an unbiased comparison of two times 11 Pareto-optimal plans for 20 patients, gradually shifting priority from maximum lung sparing to maximum ipsilateral breast sparing. The excess absolute risks of developing lung cancer and breast fibrosis were calculated using the Schneider model for lung cancer and the Avanzo model for breast fibrosis. Results: Prioritizing lung sparing reduced the mean lung dose from 2.2 Gy to as low as 0.3 Gy for the non-coplanar technique and from 1.9 Gy to 0.4 Gy for the coplanar technique, corresponding to a 7- and 4-fold median reduction of secondary lung cancer risk, respectively, compared to prioritizing breast sparing. The increase in breast dose resulted in a negligible 0.4% increase in fibrosis risk. The use of non-coplanar beams resulted in lower secondary cancer and fibrosis risks (p < 0.001). Lung sparing also reduced the mean heart dose for both techniques. Conclusions: The risk of secondary lung cancer of external beam APBI can be dramatically reduced by prioritizing lung sparing during treatment planning. The associated increase in breast dose did not lead to a relevant increase in fibrosis risk. The use of non-coplanar beams systematically resulted in the lowest risks of secondary lung cancer and fibrosis. Prioritizing lung sparing during treatment planning could increase the overall survival of early-stage breast cancer patients by reducing mortality due to secondary lung cancer and cardiovascular toxicity.
Collapse
Affiliation(s)
- Nienke Hoekstra
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Steven Habraken
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Sebastiaan Breedveld
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Mischa Hoogeman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
6
|
van Haveren R, Heijmen BJM, Breedveld S. Automatic configuration of the reference point method for fully automated multi-objective treatment planning applied to oropharyngeal cancer. Med Phys 2020; 47:1499-1508. [PMID: 32017144 PMCID: PMC7216905 DOI: 10.1002/mp.14073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose In automated treatment planning, configuration of the underlying algorithm to generate high‐quality plans for all patients of a particular tumor type can be a major challenge. Often, a time‐consuming trial‐and‐error tuning procedure is required. The purpose of this paper is to automatically configure an automated treatment planning algorithm for oropharyngeal cancer patients. Methods Recently, we proposed a new procedure to automatically configure the reference point method (RPM), a fast automatic multi‐objective treatment planning algorithm. With a well‐tuned configuration, the RPM generates a single Pareto optimal treatment plan with clinically favorable trade‐offs for each patient. The automatic configuration of the RPM requires a set of computed tomography (CT) scans with corresponding dose distributions for training. Previously, we demonstrated for prostate cancer planning with 12 objectives that training with only 9 patients resulted in high‐quality configurations. This paper further develops and explores the new automatic RPM configuration procedure for head and neck cancer planning with 22 objectives. Investigations were performed with planning CT scans of 105 previously treated unilateral or bilateral oropharyngeal cancer patients together with corresponding Pareto optimal treatment plans. These plans were generated with our clinically applied two‐phase ε‐constraint method (Erasmus‐iCycle) for automated multi‐objective treatment planning, ensuring consistent high quality and Pareto optimality of all plans. Clinically relevant, nonconvex criteria, such as dose‐volume parameters and NTCPs, were included to steer the RPM configuration. Results Training sets with 20–50 patients were investigated. Even with 20 training plans, high‐quality configurations of the RPM were feasible. Automated plan generation with the automatically configured RPM resulted in Pareto optimal plans with overall similar or better quality than that of the Pareto optimal database plans. Conclusions Automatic configuration of the RPM for automated treatment planning is feasible and drastically reduces the time and workload required when compared to manual tuning of an automated treatment planning algorithm.
Collapse
Affiliation(s)
- Rens van Haveren
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Ben J M Heijmen
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|