1
|
Duetschler A, Safai S, Weber DC, Lomax AJ, Zhang Y. The impact of motion on onboard MRI-guided pencil beam scanned proton therapy treatments. Phys Med Biol 2024; 69:095003. [PMID: 38537287 DOI: 10.1088/1361-6560/ad3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Objective.Online magnetic resonance imaging (MRI) guidance could be especially beneficial for pencil beam scanned (PBS) proton therapy of tumours affected by respiratory motion. For the first time to our knowledge, we investigate the dosimetric impact of respiratory motion on MRI-guided proton therapy compared to the scenario without magnetic field.Approach.A previously developed analytical proton dose calculation algorithm accounting for perpendicular magnetic fields was extended to enable 4D dose calculations. For two geometrical phantoms and three liver and two lung patient cases, static treatment plans were optimised with and without magnetic field (0, 0.5 and 1.5 T). Furthermore, plans were optimised using gantry angle corrections (0.5 T +5° and 1.5 T +15°) to reproduce similar beam trajectories compared to the 0 T reference plans. The effect of motion was then considered using 4D dose calculations without any motion mitigation and simulating 8-times volumetric rescanning, with motion for the patient cases provided by 4DCT(MRI) data sets. Each 4D dose calculation was performed for different starting phases and the CTV dose coverageV95%and homogeneityD5%-D95%were analysed.Main results.For the geometrical phantoms with rigid motion perpendicular to the beam and parallel to the magnetic field, a comparable dosimetric effect was observed independent of the magnetic field. Also for the five 4DCT(MRI) cases, the influence of motion was comparable for all magnetic field strengths with and without gantry angle correction. On average, the motion-induced decrease in CTVV95%from the static plan was 17.0% and 18.9% for 1.5 T and 0.5 T, respectively, and 19.9% without magnetic field.Significance.For the first time, this study investigates the combined impact of magnetic fields and respiratory motion on MR-guided proton therapy. The comparable dosimetric effects irrespective of magnetic field strength indicate that the effects of motion for future MR-guided proton therapy may not be worse than for conventional PBS proton therapy.
Collapse
Affiliation(s)
- Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
2
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
3
|
Gebauer B, Pawelke J, Hoffmann A, Lühr A. Technical note: Experimental dosimetric characterization of proton pencil beam distortion in a perpendicular magnetic field of an in-beam MR scanner. Med Phys 2023; 50:7294-7303. [PMID: 37161832 DOI: 10.1002/mp.16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND As it promises more precise and conformal radiation treatments, magnetic resonance imaging-integrated proton therapy (MRiPT) is seen as a next step in image guidance for proton therapy. The Lorentz force, which affects the course of the proton pencil beams, presents a problem for beam delivery in the presence of a magnetic field. PURPOSE To investigate the influence of the 0.32-T perpendicular magnetic field of an MR scanner on the delivery of proton pencil beams inside an MRiPT prototype system. METHODS An MRiPT prototype comprising of a horizontal pencil beam scanning beam line and an open 0.32-T MR scanner was used to evaluate the impact of the vertical magnetic field on proton beam deflection and dose spot pattern deformation. Three different proton energies (100, 150, and 220 MeV) and two spot map sizes (15 × 15 and 30 × 20 cm2 ) at four locations along the beam path without and with magnetic field were measured. Pencil-beam dose spots were measured using EBT3 films and a 2D scintillation detector. To study the magnetic field effects, a 2D Gaussian fit was applied to each individual dose spot to determine the central position( X , Y ) $(X,Y)$ , minimum and maximum lateral standard deviation (σ m i n $\sigma _{min}$ andσ m a x $\sigma _{max}$ ), orientation (θ), and the eccentricity (ε). RESULTS The dose spots were subjected to three simultaneous effects: (a) lateral horizontal beam deflection, (b) asymmetric trapezoidal deformation of the dose spot pattern, and (c) deformation and rotation of individual dose spots. The strongest effects were observed at a proton energy of 100 MeV with a horizontal beam deflection of 14-186 mm along the beam path. Within the central imaging field of the MR scanner, the maximum relative dose spot sizeσ m a x $\sigma _{max}$ decreased by up to 3.66%, whileσ m i n $\sigma _{min}$ increased by a maximum of 2.15%. The largest decrease and increase in the eccentricity of the dose spots were 0.08 and 0.02, respectively. The spot orientation θ was rotated by a maximum of 5.39°. At the higher proton energies, the same effects were still seen, although to a lesser degree. CONCLUSIONS The effect of an MRiPT prototype's magnetic field on the proton beam path, dose spot pattern, and dose spot form has been measured for the first time. The findings show that the impact of the MF must be appropriately recognized in a future MRiPT treatment planning system. The results emphasize the need for additional research (e.g., effect of magnetic field on proton beams with range shifters and impact of MR imaging sequences) before MRiPT applications can be employed to treat patients.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Aswin Hoffmann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
4
|
Duetschler A, Winterhalter C, Meier G, Safai S, Weber DC, Lomax AJ, Zhang Y. A fast analytical dose calculation approach for MRI-guided proton therapy. Phys Med Biol 2023; 68:195020. [PMID: 37750045 DOI: 10.1088/1361-6560/acf90d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Objective.Magnetic resonance (MR) is an innovative technology for online image guidance in conventional radiotherapy and is also starting to be considered for proton therapy as well. For MR-guided therapy, particularly for online plan adaptations, fast dose calculation is essential. Monte Carlo (MC) simulations, however, which are considered the gold standard for proton dose calculations, are very time-consuming. To address the need for an efficient dose calculation approach for MRI-guided proton therapy, we have developed a fast GPU-based modification of an analytical dose calculation algorithm incorporating beam deflections caused by magnetic fields.Approach.Proton beams (70-229 MeV) in orthogonal magnetic fields (0.5/1.5 T) were simulated using TOPAS-MC and central beam trajectories were extracted to generate look-up tables (LUTs) of incremental rotation angles as a function of water-equivalent depth. Beam trajectories are then reconstructed using these LUTs for the modified ray casting dose calculation. The algorithm was validated against MC in water, different materials and for four example patient cases, whereby it has also been fully incorporated into a treatment plan optimisation regime.Main results.Excellent agreement between analytical and MC dose distributions could be observed with sub-millimetre range deviations and differences in lateral shifts <2 mm even for high densities (1000 HU). 2%/2 mm gamma pass rates were comparable to the 0 T scenario and above 94.5% apart for the lung case. Further, comparable treatment plan quality could be achieved regardless of magnetic field strength.Significance.A new method for accurate and fast proton dose calculation in magnetic fields has been developed and successfully implemented for treatment plan optimisation.
Collapse
Affiliation(s)
- Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Carla Winterhalter
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Gabriel Meier
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
5
|
Marot M, Jäger F, Greilich S, Karger CP, Jäkel O, Burigo LN. Monte Carlo simulation for proton dosimetry in magnetic fields: Fano test and magnetic field correction factors kBfor Farmer-type ionization chambers. Phys Med Biol 2023; 68:175037. [PMID: 37567226 DOI: 10.1088/1361-6560/acefa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Objective. In this contribution we present a special Fano test for charged particles in presence of magnetic fields in the MC code TOol for PArticle Simulation (TOPAS), as well as the determination of magnetic field correction factorskBfor Farmer-type ionization chambers using proton beams.Approach. Customized C++ extensions for TOPAS were implemented to model the special Fano tests in presence of magnetic fields for electrons and protons. The Geant4-specific transport parameters,DRoverRandfinalRange,were investigated to optimize passing rate and computation time. ThekBwas determined for the Farmer-type PTW 30013 ionization chamber, and 5 custom built ionization chambers with same geometry but varying inner radius, testing magnetic flux density ranging from 0 to 1.0 T and two proton beam energies of 157.43 and 221.05 MeV.Main results. Using the investigated parameters, TOPAS passed the Fano test within 0.39 ± 0.15% and 0.82 ± 0.42%, respectively for electrons and protons. The chamber response (kB,M,Q) gives a maximum at different magnetic flux densities depending of the chamber size, 1.0043 at 1.0 T for the smallest chamber and 1.0051 at 0.2 T for the largest chamber. The local dose differencecBremained ≤ 0.1% for both tested energies. The magnetic field correction factorkB, for the chamber PTW 30013, varied from 0.9946 to 1.0036 for both tested energies.Significance. The developed extension for the special Fano test in TOPAS MC code with the adjusted transport parameters, can accurately transport electron and proton particles in magnetic field. This makes TOPAS a valuable tool for the determination ofkB. The ionization chambers we tested showed thatkBremains small (≤0.72%). To the best of our knowledge, this is the first calculations ofkBfor proton beams. This work represents a significant step forward in the development of MRgPT and protocols for proton dosimetry in presence of magnetic field.
Collapse
Affiliation(s)
- M Marot
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- University of Heidelberg, Faculty of Medicine, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - F Jäger
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- University of Heidelberg, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - S Greilich
- Berthold Technologies GmbH & Co. KG, Business Units Radiation Protection/Bioanalytics, Bad Wildbad, Germany
| | - C P Karger
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - O Jäkel
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - L N Burigo
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
6
|
Marants R, Tattenberg S, Scholey J, Kaza E, Miao X, Benkert T, Magneson O, Fischer J, Vinas L, Niepel K, Bortfeld T, Landry G, Parodi K, Verburg J, Sudhyadhom A. Validation of an MR-based multimodal method for molecular composition and proton stopping power ratio determination using ex vivo animal tissues and tissue-mimicking phantoms. Phys Med Biol 2023; 68:10.1088/1361-6560/ace876. [PMID: 37463589 PMCID: PMC10645122 DOI: 10.1088/1361-6560/ace876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.
Collapse
Affiliation(s)
- Raanan Marants
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States of America
| | - Evangelia Kaza
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xin Miao
- Siemens Medical Solutions USA Inc., Boston, Massachusetts, United States of America
| | | | - Olivia Magneson
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jade Fischer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| | - Luciano Vinas
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Statistics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Fuchs H, Padilla-Cabal F, Oborn BM, Georg D. Commissioning a beam line for MR-guided particle therapy assisted by in silico methods. Med Phys 2023; 50:1019-1028. [PMID: 36504399 DOI: 10.1002/mp.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Radiation therapy is continuously moving towards more precise dose delivery. The combination of online MR imaging and particle therapy, for example, radiation therapy using protons or carbon ions, could enable the next level of precision in radiotherapy. In particle therapy, research towards a combination of MR and particle therapy is well underway, but still far from clinical systems. The combination of high magnetic fields with particle therapy delivery poses several challenges for treatment planning, treatment workflow, dose delivery, and dosimetry. PURPOSE To present a workflow for commissioning of a light ion beam line with an integrated dipole magnet to perform MR-guided particle therapy (MRgPT) research, producing not only basic beam data but also magnetic field maps for accurate dose calculation. Accurate dose calculation in magnetic field environments requires high-quality magnetic field maps to compensate for magnetic-field-dependent trajectory changes and dose perturbations. METHODS The research beam line at MedAustron was coupled with a resistive dipole magnet positioned at the isocenter. Beam data were measured for proton and carbon ions with and without an applied magnetic field of 1 T. Laterally integrated depth-dose curves (IDC) as well as beam profiles were measured in water while beam trajectories were measured in air. Based on manufacturer data, an in silico model of the magnet was created, allowing to extract high-quality 3D magnetic field data. An existing GATE/Geant4 Monte Carlo (MC) model of the beam line was extended with the generated magnetic field data and benchmarked against experimental data. RESULTS A 3D magnetic field volume covering fringe fields until 50 mT was found to be sufficient for an accurate beam trajectory modeling. The effect on particle range retraction was found to be 2.3 and 0.3 mm for protons and carbon ions, respectively. Measured lateral beam offsets in water agreed within 0.4 and -0.5 mm with MC simulations for protons and carbon ions, respectively. Experimentally determined in-air beam trajectories agreed within 0.4 mm in the homogeneous magnetic field area. CONCLUSION The presented approach based on in silico modeling and measurements allows to commission a beam line for MRgPT while providing benchmarking data for the magnetic field modeling, required for state-of-the art dose calculation methods.
Collapse
Affiliation(s)
- Hermann Fuchs
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Wien, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Fatima Padilla-Cabal
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Bradley M Oborn
- Institute of Radiooncology-OncoRay, Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, Australia
| | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria.,Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
9
|
Jäkel O, Kraft G, Karger CP. The history of ion beam therapy in Germany. Z Med Phys 2022; 32:6-22. [PMID: 35101337 PMCID: PMC9948864 DOI: 10.1016/j.zemedi.2021.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
The advantageous depth dose profile of ion beams together with state of the art beam delivery and treatment planning systems allow for highly conformal tumor treatments in patients. First treatments date back to 1954 at the Lawrence Berkeley Laboratory (LBL) and in Europe, ion beam therapy started in the mid-1990s at the Paul-Scherrer Institute (PSI) with protons and at the Helmholtz Center for Heavy Ion Research (GSI) with carbon ions, followed by the Heidelberg Ion Therapy Center (HIT) in Heidelberg. This review describes the historical development of ion beam therapy in Germany based on the pioneering work at LBL and in the context of simultaneous developments in other countries as well as recent developments.
Collapse
Affiliation(s)
- Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT) at the University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Gerhard Kraft
- Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt, Germany
| | - Christian P. Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
10
|
Chen Y, Gong G, Wang Y, Liu C, Su Y, Wang L, Yang B, Yin Y. Comparative Evaluation of 4-Dimensional Computed Tomography and 4-Dimensional Magnetic Resonance Imaging to Delineate the Target of Primary Liver Cancer. Technol Cancer Res Treat 2021; 20:15330338211045499. [PMID: 34617855 PMCID: PMC8504652 DOI: 10.1177/15330338211045499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: To evaluate the feasibility of 4-dimensional magnetic resonance imaging (4DMRI) in establishing the target of primary liver cancer in comparison with 4-dimensional computed tomography (4DCT). Methods and Materials: A total of 23 patients with primary liver cancer who received radiotherapy were selected, and 4DCT and T2w-4DMRI simulations were conducted to obtain 4DCT and T2w-4DMRI simulation images. The 4DCT and T2w-4DMRI data were sorted into 10 and 8 respiratory phase bins, respectively. The liver and gross tumor volumes (GTVs) were delineated in all images using programmed clinical workflows under tumor delineation guidelines. The internal organs at risk volumes (IRVs) and internal target volumes (ITVs) were the unions of all the phase livers and GTVs, respectively. Then, the artifacts, liver volume, GTV, and motion range in 4DCT and T2w-4DMRI were compared. Results: The mean GTV volume based on 4DMRI was 136.42 ± 231.27 cm3, which was 25.04 cm3 (15.5%) less than that of 4DCT (161.46 ± 280.29 cm3). The average volume of ITV determined by 4DMRI was 166.12 ± 270.43 cm3, which was 22.44 cm3 (11.9%) less than that determined by 4DCT (188.56 ± 307.57 cm3). Liver volume and IRV in 4DMRI increased by 4.0% and 6.6%, respectively, compared with 4DCT. The difference in tumor motion by T2w-4DMRI based on the centroid was greater than that of 4DCT in the L/R, A/P, and S/I directions, and the average displacement differences were 2.6, 2.8, and 6.9 mm, respectively. The severe artifacts in 4DCT were 47.8% (11/23) greater than in 4DMRI 17.4% (4/23). Conclusions: Compared with 4DCT, T2-weighted and navigator-triggered 4DMRI produces fewer artifacts and larger motion differences in hepatic intrafraction tumors, which is a feasible technique for primary liver cancer treatment planning.
Collapse
Affiliation(s)
- Yukai Chen
- East China University of Technology, Nanchang, Jiangxi, China
| | - Guanzhong Gong
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yinxing Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Chenlu Liu
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Ya Su
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Lizhen Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bo Yang
- East China University of Technology, Nanchang, Jiangxi, China
| | - Yong Yin
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
11
|
Guerreiro F, Svensson S, Seravalli E, Traneus E, Raaymakers BW. Intra-fractional per-beam adaptive workflow to mitigate the need for a rotating gantry during MRI-guided proton therapy. Phys Med Biol 2021; 66. [PMID: 34298523 DOI: 10.1088/1361-6560/ac176f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The integration of real-time magnetic resonance imaging (MRI)-guidance and proton therapy would potentially improve the proton dose steering capability by reducing daily uncertainties due to anatomical variations. The use of a fixed beamline coupled with an axial patient couch rotation would greatly simplify the proton delivery with MRI-guidance. Nonetheless, it is mandatory to assure that the plan quality is not deteriorated by the anatomical deformations due to patient rotation. In this work, an in-house tool allowing for intra-fractional per-beam adaptation of intensity-modulated proton plans (BeamAdapt) was implemented through features available in RayStation. A set of three MRIs was acquired for two healthy volunteers (V1, V2): (1) no rotation/static, (2) rotation to the right and (3) left. V1 was rotated by 15º, to simulate a clinical pediatric abdominal case and V2 by 45º, to simulate an extreme patient rotation case. For each volunteer, a total of four intensity-modulated pencil beam scanning plans were optimized on the static MRI using virtual abdominal targets and 2-3 posterior-oblique beams. Beam angles were defined according to the angulations on the rotated MRIs. With BeamAdapt, each original plan was first converted into separate plans with one beam per plan. In an iterative order, individual beam doses were non-rigidly deformed to the rotated anatomies and re-optimized accounting for the consequent deformations and the beam doses delivered so far. For evaluation, the final adapted dose distribution was propagated back to the static MRI. Planned and adapted dose distributions were compared by computing relative differences between dose-volume histogram (DVH) metrics. Absolute target dose differences were on average below 1% and mean dose organs-at-risk differences were below 3%. With BeamAdapt, not only intra-fractional per-beam proton plan adaptation coupled with axial patient rotation is possible but also the need for a rotating gantry during MRI-guidance might be mitigated.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Department of Radiotherapy, University Medical Center Utrecht Imaging Division, Utrecht, NETHERLANDS
| | | | - Enrica Seravalli
- Department of Radiotherapy, University Medical Center Utrecht Imaging Division, Utrecht, NETHERLANDS
| | - Erik Traneus
- RaySearch Laboratories AB, Stockholm, Stockholm, SWEDEN
| | - Bas W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht Imaging Division, Utrecht, NETHERLANDS
| |
Collapse
|
12
|
Gantz S, Hietschold V, Hoffmann AL. Characterization of magnetic interference and image artefacts during simultaneous in-beam MR imaging and proton pencil beam scanning. Phys Med Biol 2020; 65:215014. [PMID: 33151908 DOI: 10.1088/1361-6560/abb16f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the first time, a low-field open magnetic resonance (MR) scanner was combined with a proton pencil beam scanning (PBS) research beamline. The aim of this study was to characterize the magnetic fringe fields produced by the PBS system and measure their effects on MR image quality during simultaneous PBS irradiation and image acquisition. A magnetic field camera measured the change in central resonance frequency (Δf res) and magnetic field homogeneity (ΔMFH) of the B0 field of the MR scanner during operation of the beam transport and scanning magnets. The beam energy was varied between 70 - 220 MeV and beam scanning was performed along the central horizontal and vertical axis of a 48 × 24 cm2 radiation field. The time structure of the scanning magnets' fringe fields was simultaneously recorded by a tri-axial Hall probe. MR imaging experiments were conducted using the ACR (American College of Radiology) Small MRI Phantom and a spoiled gradient echo pulse sequence during simultaneous volumetric irradiation. Computer simulations were performed to predict the effects of B 0 field perturbations due to PBS irradiation on MR image formation in k-space. Setting the beam transport magnets, horizontal and vertical scanning magnets resulted in a maximum Δf res of 50, 235 and 4 Hz, respectively. The ΔMFH was less than 3 parts per million for all measurements. MR images acquired during beam energy variation and vertical beam scanning showed no visual loss in image quality. However, MR images acquired during horizontal beam scanning showed severe coherent ghosting artefacts in phase encoding direction. Both simulated and measured k-space phase maps prove that these artefacts are caused by phase-offsets. This study shows first experimental evidence that simultaneous in-beam MR imaging during proton PBS irradiation is subject to severe loss of image quality in the absence of magnetic decoupling between the PBS and MR system.
Collapse
Affiliation(s)
- Sebastian Gantz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | |
Collapse
|
13
|
Implementation of a dose calculation algorithm based on Monte Carlo simulations for treatment planning towards MRI guided ion beam therapy. Phys Med 2020; 74:155-165. [DOI: 10.1016/j.ejmp.2020.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022] Open
|
14
|
Hoffmann A, Oborn B, Moteabbed M, Yan S, Bortfeld T, Knopf A, Fuchs H, Georg D, Seco J, Spadea MF, Jäkel O, Kurz C, Parodi K. MR-guided proton therapy: a review and a preview. Radiat Oncol 2020; 15:129. [PMID: 32471500 PMCID: PMC7260752 DOI: 10.1186/s13014-020-01571-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/17/2020] [Indexed: 02/14/2023] Open
Abstract
Background The targeting accuracy of proton therapy (PT) for moving soft-tissue tumours is expected to greatly improve by real-time magnetic resonance imaging (MRI) guidance. The integration of MRI and PT at the treatment isocenter would offer the opportunity of combining the unparalleled soft-tissue contrast and real-time imaging capabilities of MRI with the most conformal dose distribution and best dose steering capability provided by modern PT. However, hybrid systems for MR-integrated PT (MRiPT) have not been realized so far due to a number of hitherto open technological challenges. In recent years, various research groups have started addressing these challenges and exploring the technical feasibility and clinical potential of MRiPT. The aim of this contribution is to review the different aspects of MRiPT, to report on the status quo and to identify important future research topics. Methods Four aspects currently under study and their future directions are discussed: modelling and experimental investigations of electromagnetic interactions between the MRI and PT systems, integration of MRiPT workflows in clinical facilities, proton dose calculation algorithms in magnetic fields, and MRI-only based proton treatment planning approaches. Conclusions Although MRiPT is still in its infancy, significant progress on all four aspects has been made, showing promising results that justify further efforts for research and development to be undertaken. First non-clinical research solutions have recently been realized and are being thoroughly characterized. The prospect that first prototype MRiPT systems for clinical use will likely exist within the next 5 to 10 years seems realistic, but requires significant work to be performed by collaborative efforts of research groups and industrial partners.
Collapse
Affiliation(s)
- Aswin Hoffmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bradley Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, Australia
| | - Maryam Moteabbed
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Susu Yan
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman Fuchs
- Department of Radiation Oncology, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum DKFZ, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Maria Francesca Spadea
- Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum DKFZ, Heidelberg, Germany.,Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Oliver Jäkel
- Medical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum DKFZ and Heidelberg Ion-Beam Therapy Center at the University Medical Center, Heidelberg, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany.
| |
Collapse
|
15
|
Padilla-Cabal F, Alejandro Fragoso J, Franz Resch A, Georg D, Fuchs H. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields. Med Phys 2019; 47:223-233. [PMID: 31661559 PMCID: PMC7003833 DOI: 10.1002/mp.13883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Magnetic resonance guidance in proton therapy (MRPT) is expected to improve its current performance. The combination of magnetic fields with clinical proton beam lines poses several challenges for dosimetry, treatment planning and dose delivery. Proton beams are deflected by magnetic fields causing considerable changes in beam trajectories and also a retraction of the Bragg peak positions. A proper prediction and compensation of these effects is essential to ensure accurate dose calculations. This work aims to develop and benchmark a Monte Carlo (MC) beam model for dose calculation of MRPT for static magnetic fields up to 1 T. Methods Proton beam interactions with magnetic fields were simulated using the GATE/Geant4 toolkit. The transport of charged particle in custom 3D magnetic field maps was implemented for the first time in GATE. Validation experiments were done using a horizontal proton pencil beam scanning system with energies between 62.4 and 252.7 MeV and a large gap dipole magnet (B = 0–1 T), positioned at the isocenter and creating magnetic fields transverse to the beam direction. Dose was measured with Gafchromic EBT3 films within a homogeneous PMMA phantom without and with bone and tissue equivalent material slab inserts. Linear energy transfer (LET) quenching of EBT3 films was corrected using a linear model on dose‐averaged LET method to ensure a realistic dosimetric comparison between simulations and experiments. Planar dose distributions were measured with the films in two different configurations: parallel and transverse to the beam direction using single energy fields and spread‐out Bragg peaks. The MC model was benchmarked against lateral deflections and spot sizes in air of single beams measured with a Lynx PT detector, as well as dose distributions using EBT3 films. Experimental and calculated dose distributions were compared to test the accuracy of the model. Results Measured proton beam deflections in air at distances of 465, 665, and 1155 mm behind the isocenter after passing the magnetic field region agreed with MC‐predicted values within 4 mm. Differences between calculated and measured beam full width at half maximum (FWHM) were lower than 2 mm. For the homogeneous phantom, measured and simulated in‐depth dose profiles showed range and average dose differences below 0.2 mm and 1.2%, respectively. Simulated central beam positions and widths differed <1 mm to the measurements with films. For both heterogenous phantoms, differences within 1 mm between measured and simulated central beam positions and widths were obtained, confirming a good agreement of the MC model. Conclusions A GATE/Geant4 beam model for protons interacting with magnetic fields up to 1 T was developed and benchmarked to experimental data. For the first time, the GATE/Geant4 model was successfully validated not only for single energy beams, but for SOBP, in homogeneous and heterogeneous phantoms. EBT3 film dosimetry demonstrated to be a powerful dosimetric tool, once the film response function is LET corrected, for measurements in‐line and transverse to the beam direction in magnetic fields. The proposed MC beam model is foreseen to support treatment planning and quality assurance (QA) activities toward MRPT.
Collapse
Affiliation(s)
- Fatima Padilla-Cabal
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Jose Alejandro Fragoso
- Department of Nuclear Physics, Higher Institute of Technologies and Applied Science, Havana, Cuba
| | - Andreas Franz Resch
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Hermann Fuchs
- Department of Radiotherapy, Medical University of Vienna/AKH, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|