1
|
Gohdo M, Maeyama T. Time-resolved observation of DHR123 nano-clay radio-fluorogenic gel dosimeters by photoluminescence-detected pulse radiolysis. Biomed Phys Eng Express 2024; 10:065049. [PMID: 39353462 DOI: 10.1088/2057-1976/ad81fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
The importance of real-time dose evaluation has increased for recent advanced radiotherapy. However, conventional methods for real-time dosimetry using gel dosimeters face challenges owing to the delayed dose response caused by the slow completion of radiation-induced chemical reactions. In this study, a novel technique called photoluminescence-detected pulse radiolysis (PLPR) was developed, and its potential to allow real-time dose measurements using nano-clay radio-fluorogenic gel (NC-RFG) dosimeters was investigated. PLPR is a time-resolved observation method, and enables time-resolved fluorescence measurement. NC-RFG dosimeters were prepared, typically consisting of 100 μM dihydrorhodamine 123 (DHR123) and 2.0 wt.% nano-clay, along with catalytic and dissolving additives. We successfully achieved time-resolved observation of the increase in fluorescence intensity upon irradiation of the dosimeter. Dose evaluation was possible at 1 s after irradiation. The dose-rate effect was not observed for the deoxygenated dosimeter, but was observed for the aerated dosimeter. Besides the dose-rate effect, linear dose responses were obtained for both conditions. Furthermore, we made a novel observation of a decay in the fluorescence intensity over time in the early stages which named fluorescence secondary loss (FSL) and elucidated the conditions under which this phenomenon occurs.
Collapse
Affiliation(s)
- Masao Gohdo
- SANKEN, Osaka University. 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takuya Maeyama
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
2
|
Oolbekkink S, Wolthaus JW, van Asselen B, Raaymakers BW. 3D gel dosimeter assessment for end-to-end geometric accuracy determination of the online adaptive workflow on the 1.5 T MR-linac. Phys Imaging Radiat Oncol 2024; 32:100664. [PMID: 39583957 PMCID: PMC11585670 DOI: 10.1016/j.phro.2024.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background and purpose During an end-to-end (E2E) test on the online workflow of the MR-linac, the performance of the treatment starting from the acquisition of pre-treatment MRI scans and ending with dose delivery is quantified. In such a test, the geometrical accuracy of the entire workflow is assessed. Ideally, the 3D geometrical accuracy of dose delivery on an MR-linac should be assessed using dosimeters that provide 3D dose distributions. Gel dosimeters, for instance, have proven to be valuable tools for evaluating 3D dose distributions on an MR-linac. In this study, we investigated the use of 3D gel dosimeters for the assessment of the 3D geometrical accuracy and reproducibility of the adaptive procedure on an MR-linac in an E2E verification. Materials and methods All measurements were performed on a clinical Unity MR-linac using 3D gel dosimeters in an anthropomorphic head phantom. Film measurements were performed as a reference dosimeter. An online adapt-to-shape procedure was performed for each measurement. Results The geometric accuracy and reproducibility of the gel dosimeter measurements were high, and similar to all in-plane film measurements. The largest shift found was 0.3 mm for the gel dosimeter, and 0.6 mm for the in-plane film measurements. The 3D displacement vectors of the gel dosimeter showed similar uncertainties as the in-plane film 2D displacement vectors. Conclusions Gel dosimeters can be used for the assessment of the 3D end-to-end geometric accuracy of an MR-linac.
Collapse
Affiliation(s)
- Stijn Oolbekkink
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Jochem W.H. Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| |
Collapse
|
3
|
Ma C, Zhou J. First Application of Demand-Triggered Online Adaptive Radiotherapy in the Treatment of Cervical Cancer: A Clinical Report. Cureus 2024; 16:e69703. [PMID: 39429366 PMCID: PMC11490271 DOI: 10.7759/cureus.69703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Gynecology cancers can reap significant benefits from adaptive radiation therapy (ART) for four major reasons: organ motion, organ deformation, density change, and cavity filling. There are three recognized types of adaptive radiotherapy: offline, online, and real-time. This balance of improved dosimetry versus clinic resources, as well as the optimal timing for adaptations, is still under investigation. The emergence of on-demand online adaptive radiotherapy (OART) can solve the above problems. In this context, we introduce two patients with cervical cancer who used on-demand OART for the first time. One patient with cervical cancer received radical radiotherapy on the United Imaging uCT-ART platform, and another patient with cervical cancer received postoperative adjuvant radiotherapy. The radiotherapy process used OART, which was triggered by senior radiotherapists, assisted by artificial intelligence, and guided by fan-beam computer tomography. Patient 1, who was 54 years old with cervical squamous cell carcinoma, International Federation of Gynecology and Obstetrics (FIGO) stage ⅢC1, underwent radical concurrent chemoradiotherapy. The target volume was reduced in the late stage of radiotherapy. The target volume coverage of the OART plan was better, and the bladder and rectum doses were lower than those of the image-guided radiotherapy plan. Patient 2, who was 56 years old with cervical adenocarcinoma, FIGO stage ⅡA1, underwent postoperative concurrent chemoradiotherapy. If the fractionated treatment during radiotherapy was carried out according to the original plan, treatment off-target would occur, while the OART plan could ensure target coverage. The acute toxic reactions that occurred in both patients during radiotherapy were patient-reported outcome Common Terminology Criteria for Adverse Events 1-2, and no toxic reactions of grade 3 or above occurred. This is the first description of the successful implementation of the uCT-ART-based OART system in EBRT for cervical cancer.
Collapse
Affiliation(s)
- Chenying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, CHN
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, CHN
| |
Collapse
|
4
|
Karger CP, Elter A, Dorsch S, Mann P, Pappas E, Oldham M. Validation of complex radiotherapy techniques using polymer gel dosimetry. Phys Med Biol 2024; 69:06TR01. [PMID: 38330494 DOI: 10.1088/1361-6560/ad278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
5
|
Riis HL, Chick J, Dunlop A, Tilly D. The Quality Assurance of a 1.5 T MR-Linac. Semin Radiat Oncol 2024; 34:120-128. [PMID: 38105086 DOI: 10.1016/j.semradonc.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The recent introduction of a commercial 1.5 T MR-linac system has considerably improved the image quality of the patient acquired in the treatment unit as well as enabling online adaptive radiation therapy (oART) treatment strategies. Quality Assurance (QA) of this new technology requires new methodology that allows for the high field MR in a linac environment. The presence of the magnetic field requires special attention to the phantoms, detectors, and tools to perform QA. Due to the design of the system, the integrated megavoltage imager (MVI) is essential for radiation beam calibrations and QA. Additionally, the alignment between the MR image system and the radiation isocenter must be checked. The MR-linac system has vendor-supplied phantoms for calibration and QA tests. However, users have developed their own routine QA systems to independently check that the machine is performing as required, as to ensure we are able to deliver the intended dose with sufficient certainty. The aim of this work is therefore to review the MR-linac specific QA procedures reported in the literature.
Collapse
Affiliation(s)
- Hans Lynggaard Riis
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Joan Chick
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - Alex Dunlop
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - David Tilly
- Department of Immunology, Genetics and Pathology, Medical Radiation Physics, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
6
|
van den Dobbelsteen M, Hackett SL, van Asselen B, Oolbekkink S, Wolthaus JW, de Vries JW, Raaymakers BW. Experimental validation of multi-fraction online adaptations in magnetic resonance guided radiotherapy. Phys Imaging Radiat Oncol 2023; 28:100507. [PMID: 38035206 PMCID: PMC10685304 DOI: 10.1016/j.phro.2023.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Background and purpose Radiotherapy plan verification is generally performed on the reference plan based on the pre-treatment anatomy. However, the introduction of online adaptive treatments demands a new approach, as plans are created daily on different anatomies. The aim of this study was to experimentally validate the accuracy of total doses of multi-fraction plan adaptations in magnetic resonance imaging guided radiotherapy in a phantom study, isolated from the uncertainty of deformable image registration. Materials and methods We experimentally verified the total dose, measured on external beam therapy 3 (EBT3) film, using a treatment with five online adapted fractions. Three series of experiments were performed, each focusing on a category of inter-fractional variation; translations, rotations and body modifications. Variations were introduced during each fraction and adapted plans were generated and irradiated. Single fraction doses and total doses over five online adapted fractions were investigated. Results The online adapted measurements and calculations showed a good agreement for single fractions and multi-fraction treatments for the dose profiles, gamma passing rates, dose deviations and distances to agreement. The gamma passing rate using a 2%/2 mm criterion ranged from 99.2% to 99.5% for a threshold dose of 10% of the maximum dose (Dmax) and from 96.2% to 100% for a threshold dose of 90% of Dmax, for the total translations, rotations and body modifications. Conclusions The total doses of multi-fraction treatments showed similar accuracies compared to single fraction treatments, indicating an accurate dosimetric outcome of a multi-fraction treatment in adaptive magnetic resonance imaging guided radiotherapy.
Collapse
Affiliation(s)
- Madelon van den Dobbelsteen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sara L. Hackett
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Stijn Oolbekkink
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jochem W.H. Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J.H. Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Li Y, Li Z, Zhu J, Li B, Shu H, Ge D. Online prediction for respiratory movement compensation: a patient-specific gating control for MRI-guided radiotherapy. Radiat Oncol 2023; 18:149. [PMID: 37697360 PMCID: PMC10496354 DOI: 10.1186/s13014-023-02341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND This study aims to validate the effectiveness of linear regression for motion prediction of internal organs or tumors on 2D cine-MR and to present an online gating signal prediction scheme that can improve the accuracy of MR-guided radiotherapy for liver and lung cancer. MATERIALS AND METHODS We collected 2D cine-MR sequences of 21 liver cancer patients and 10 lung cancer patients to develop a binary gating signal prediction algorithm that forecasts the crossing-time of tumor motion traces relative to the target threshold. Both 0.4 s and 0.6 s prediction windows were tested using three linear predictors and three recurrent neural networks (RNNs), given the system delay of 0.5 s. Furthermore, an adaptive linear regression model was evaluated using only the first 30 s as the burn-in period, during which the model parameters were adapted during the online prediction process. The accuracy of the predicted traces was measured using amplitude metrics (MAE, RMSE, and R2), and in addition, we proposed three temporal metrics, namely crossing error, gating error, and gating accuracy, which are more relevant to the nature of the gating signals. RESULTS In both 0.6 s and 0.4 s prediction cases, linear regression outperformed other methods, demonstrating significantly smaller amplitude errors compared to the RNNs (P < 0.05). The proposed algorithm with adaptive linear regression had the best performance with an average gating accuracy of 98.3% and 98.0%, a gating error of 44 ms and 45 ms, for liver cancer and lung cancer patients, respectively. CONCLUSION A functional online gating control scheme was developed with an adaptive linear regression that is both more cost-efficient and accurate than sophisticated RNN based methods in all studied metrics.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
- L.T.S.I., Inserm UMR 1099 - Université de Rennes, Campus de Beaulieu - Bat. 22, 35042, Rennes, France
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Centre de Recherche en Information Biomédicale, Sino-Français (CRIBs), Rennes, France
| | - Zhenjiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Jian Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Baosheng Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China.
| | - Huazhong Shu
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Centre de Recherche en Information Biomédicale, Sino-Français (CRIBs), Rennes, France.
| | - Di Ge
- L.T.S.I., Inserm UMR 1099 - Université de Rennes, Campus de Beaulieu - Bat. 22, 35042, Rennes, France.
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Centre de Recherche en Information Biomédicale, Sino-Français (CRIBs), Rennes, France.
| |
Collapse
|
8
|
Shan S, Gao Y, Liu PZY, Whelan B, Sun H, Dong B, Liu F, Waddington DEJ. Distortion-corrected image reconstruction with deep learning on an MRI-Linac. Magn Reson Med 2023; 90:963-977. [PMID: 37125656 PMCID: PMC10860740 DOI: 10.1002/mrm.29684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE MRI is increasingly utilized for image-guided radiotherapy due to its outstanding soft-tissue contrast and lack of ionizing radiation. However, geometric distortions caused by gradient nonlinearities (GNLs) limit anatomical accuracy, potentially compromising the quality of tumor treatments. In addition, slow MR acquisition and reconstruction limit the potential for effective image guidance. Here, we demonstrate a deep learning-based method that rapidly reconstructs distortion-corrected images from raw k-space data for MR-guided radiotherapy applications. METHODS We leverage recent advances in interpretable unrolling networks to develop a Distortion-Corrected Reconstruction Network (DCReconNet) that applies convolutional neural networks (CNNs) to learn effective regularizations and nonuniform fast Fourier transforms for GNL-encoding. DCReconNet was trained on a public MR brain dataset from 11 healthy volunteers for fully sampled and accelerated techniques, including parallel imaging (PI) and compressed sensing (CS). The performance of DCReconNet was tested on phantom, brain, pelvis, and lung images acquired on a 1.0T MRI-Linac. The DCReconNet, CS-, PI-and UNet-based reconstructed image quality was measured by structural similarity (SSIM) and RMS error (RMSE) for numerical comparisons. The computation time and residual distortion for each method were also reported. RESULTS Imaging results demonstrated that DCReconNet better preserves image structures compared to CS- and PI-based reconstruction methods. DCReconNet resulted in the highest SSIM (0.95 median value) and lowest RMSE (<0.04) on simulated brain images with four times acceleration. DCReconNet is over 10-times faster than iterative, regularized reconstruction methods. CONCLUSIONS DCReconNet provides fast and geometrically accurate image reconstruction and has the potential for MRI-guided radiotherapy applications.
Collapse
Affiliation(s)
- Shanshan Shan
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Yang Gao
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
- School of Computer Science and EngineeringCentral South UniversityChangshaHunanChina
| | - Paul Z. Y. Liu
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| | - Brendan Whelan
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| | - Hongfu Sun
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Bin Dong
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| | - Feng Liu
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - David E. J. Waddington
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| |
Collapse
|
9
|
Effect of 3D Animation Combined with Teach-Back Health Education on Pelvic Floor Muscle Training in LARS Patients: A Randomized Controlled Trial. J Nurs Manag 2023. [DOI: 10.1155/2023/6847933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Aim. The present study aimed to evaluate the effect of 3D animation combined with teach-back health education on the recovery of low anterior resection syndrome (LARS) patients. Background. LARS is the most common problem after anus-preserving surgery in rectal cancer. Pelvic floor muscle training can promote the recovery of recto-anal function. Methods. Ninety-nine patients with LARS were randomly divided into control group, experiment group I, and experiment group II. The control group was guided by one-to-one verbal pelvic floor muscle training. The experiment group I was given self-made 3D animation along with one-to-one pelvic floor muscle guidance. The 3D animation and teach-back methods were used for training and guidance in the experiment group II. The outcome measures were scores of low anterior resection syndrome scale items, as well as the completion of training content. Results. The degree of completion of training content in the experiment group II was higher than that of the control group and experiment group I. The total score of LARSS in the experiment group II was significantly lower than in the control group and experiment group I. In particular, scores of loose stool incontinence, defecation frequency level, tenesmus, and defecation urgency in experiment group II were better than those in the control group. Conclusion. 3D animation combined with teach-back health education improved the mastery of pelvic floor muscle training theory and practice in LARS patients, and effectively reduced the symptoms. Implications for Nursing Management. This intervention promoted the recovery of pelvic floor muscle function in LARS patients and can be regarded as an effective measure to improve quality of life and provide better clinical care for patients.
Collapse
|
10
|
Liu PZY, Shan S, Waddington D, Whelan B, Dong B, Liney G, Keall P. Rapid distortion correction enables accurate magnetic resonance imaging-guided real-time adaptive radiotherapy. Phys Imaging Radiat Oncol 2023; 25:100414. [PMID: 36713071 PMCID: PMC9880240 DOI: 10.1016/j.phro.2023.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI)-Linac systems combine simultaneous MRI with radiation delivery, allowing treatments to be guided by anatomically detailed, real-time images. However, MRI can be degraded by geometric distortions that cause uncertainty between imaged and actual anatomy. In this work, we develop and integrate a real-time distortion correction method that enables accurate real-time adaptive radiotherapy. Materials and methods The method was based on the pre-treatment calculation of distortion and the rapid correction of intrafraction images. A motion phantom was set up in an MRI-Linac at isocentre (P0 ), the edge (P 1) and just outside (P 2) the imaging volume. The target was irradiated and tracked during real-time adaptive radiotherapy with and without the distortion correction. The geometric tracking error and latency were derived from the measurements of the beam and target positions in the EPID images. Results Without distortion correction, the mean geometric tracking error was 1.3 mm at P 1 and 3.1 mm at P 2. When distortion correction was applied, the error was reduced to 1.0 mm at P 1 and 1.1 mm at P 2. The corrected error was similar to an error of 0.9 mm at P0 where the target was unaffected by distortion indicating that this method has accurately accounted for distortion during tracking. The latency was 319 ± 12 ms without distortion correction and 335 ± 34 ms with distortion correction. Conclusions We have demonstrated a real-time distortion correction method that maintains accurate radiation delivery to the target, even at treatment locations with large distortion.
Collapse
Affiliation(s)
- Paul Z. Y Liu
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Shanshan Shan
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - David Waddington
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Brendan Whelan
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Bin Dong
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Gary Liney
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Paul Keall
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
11
|
Guerini AE, Nici S, Magrini SM, Riga S, Toraci C, Pegurri L, Facheris G, Cozzaglio C, Farina D, Liserre R, Gasparotti R, Ravanelli M, Rondi P, Spiazzi L, Buglione M. Adoption of Hybrid MRI-Linac Systems for the Treatment of Brain Tumors: A Systematic Review of the Current Literature Regarding Clinical and Technical Features. Technol Cancer Res Treat 2023; 22:15330338231199286. [PMID: 37774771 PMCID: PMC10542234 DOI: 10.1177/15330338231199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Possible advantages of magnetic resonance (MR)-guided radiation therapy (MRgRT) for the treatment of brain tumors include improved definition of treatment volumes and organs at risk (OARs) that could allow margin reductions, resulting in limited dose to the OARs and/or dose escalation to target volumes. Recently, hybrid systems integrating a linear accelerator and an magnetic resonance imaging (MRI) scan (MRI-linacs, MRL) have been introduced, that could potentially lead to a fully MRI-based treatment workflow. METHODS We performed a systematic review of the published literature regarding the adoption of MRL for the treatment of primary or secondary brain tumors (last update November 3, 2022), retrieving a total of 2487 records; after a selection based on title and abstracts, the full text of 74 articles was analyzed, finally resulting in the 52 papers included in this review. RESULTS AND DISCUSSION Several solutions have been implemented to achieve a paradigm shift from CT-based radiotherapy to MRgRT, such as the management of geometric integrity and the definition of synthetic CT models that estimate electron density. Multiple sequences have been optimized to acquire images with adequate quality with on-board MR scanner in limited times. Various sophisticated algorithms have been developed to compensate the impact of magnetic field on dose distribution and calculate daily adaptive plans in a few minutes with satisfactory dosimetric parameters for the treatment of primary brain tumors and cerebral metastases. Dosimetric studies and preliminary clinical experiences demonstrated the feasibility of treating brain lesions with MRL. CONCLUSIONS The adoption of an MRI-only workflow is feasible and could offer several advantages for the treatment of brain tumors, including superior image quality for lesions and OARs and the possibility to adapt the treatment plan on the basis of daily MRI. The growing body of clinical data will clarify the potential benefit in terms of toxicity and response to treatment.
Collapse
Affiliation(s)
- Andrea Emanuele Guerini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefania Nici
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Stefano Riga
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Cristian Toraci
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giorgio Facheris
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Claudia Cozzaglio
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-last author
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-last author
| |
Collapse
|
12
|
De Deene Y. Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels 2022; 8:599. [PMID: 36135311 PMCID: PMC9498652 DOI: 10.3390/gels8090599] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022] Open
Abstract
Gel dosimetry was developed in the 1990s in response to a growing need for methods to validate the radiation dose distribution delivered to cancer patients receiving high-precision radiotherapy. Three different classes of gel dosimeters were developed and extensively studied. The first class of gel dosimeters is the Fricke gel dosimeters, which consist of a hydrogel with dissolved ferrous ions that oxidize upon exposure to ionizing radiation. The oxidation results in a change in the nuclear magnetic resonance (NMR) relaxation, which makes it possible to read out Fricke gel dosimeters by use of quantitative magnetic resonance imaging (MRI). The radiation-induced oxidation in Fricke gel dosimeters can also be visualized by adding an indicator such as xylenol orange. The second class of gel dosimeters is the radiochromic gel dosimeters, which also exhibit a color change upon irradiation but do not use a metal ion. These radiochromic gel dosimeters do not demonstrate a significant radiation-induced change in NMR properties. The third class is the polymer gel dosimeters, which contain vinyl monomers that polymerize upon irradiation. Polymer gel dosimeters are predominantly read out by quantitative MRI or X-ray CT. The accuracy of the dosimeters depends on both the physico-chemical properties of the gel dosimeters and on the readout technique. Many different gel formulations have been proposed and discussed in the scientific literature in the last three decades, and scanning methods have been optimized to achieve an acceptable accuracy for clinical dosimetry. More recently, with the introduction of the MR-Linac, which combines an MRI-scanner and a clinical linear accelerator in one, it was shown possible to acquire dose maps during radiation, but new challenges arise.
Collapse
Affiliation(s)
- Yves De Deene
- Liverpool & Macarthur Cancer Therapy Centres, Liverpool, NSW 1871, Australia; or
- Ingham Institute, Liverpool, NSW 2170, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
13
|
Nierer L, Kamp F, Reiner M, Corradini S, Rabe M, Dietrich O, Parodi K, Belka C, Kurz C, Landry G. Evaluation of an anthropomorphic ion chamber and 3D gel dosimetry head phantom at a 0.35 T MR-linac using separate 1.5 T MR-scanners for gel readout. Z Med Phys 2022; 32:312-325. [PMID: 35305857 PMCID: PMC9948847 DOI: 10.1016/j.zemedi.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE To date, no universally accepted technique for the evaluation of the overall dosimetric performance of hybrid integrated magnetic resonance imaging (MR) - linear accelerators (linacs) is available. We report on the suitability and reliability of a novel phantom with modular inserts for combined polymer gel (PG) and ionisation chamber (IC) measurements at a 0.35 T MR-linac. METHODS Three 3D-printed, modular head phantoms, based on real patient anatomy, were used for repeated (2 times) PG irradiations of cranial treatment plans on a 0.35 T MR-linac. The PG readout was performed on two 1.5 T diagnostic MR-scanners to reduce scanning time. The PG dose volumes were normalised to the IC dose (normalised dose N1) and to the median planning target volume dose (normalised dose N2). Linearity of the PG dose response was validated and dose profiles, centres of mass (COM) of the 95% isodoses and dose volume histograms (DVH) were compared between planned and measured dose distributions and a 3D gamma analysis was performed. RESULTS Dose linearity of the PG was good (R2> 0.99 for all linear fit functions). High agreement was found between planned and measured dose volumes in the dose profiles and DVHs. The largest dose deviation was found in the intermediate dose region (mean dose deviation 0.2Gy; 5.6%). A mean COM offset of 1.2mm indicated high spatial accuracy. Mean 3D gamma passing rates (2%, 2mm) of 83.3% for N1 and 91.6% for N2 dose distributions were determined. When comparing repeated PG measurements to each other, a mean gamma passing rate of 95.7% was found. CONCLUSION The new modular phantom was found practical for use at a 0.35 T MR-linac. In contrast to the high dose region, larger mean deviations were found in the mid dose range. The PG measurements showed high reproducibility. The MR-linac performed well in a non-adaptive setting in terms of spatial and dosimetric accuracy.
Collapse
Affiliation(s)
- Lukas Nierer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; Department of Radiation Oncology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
14
|
Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy. J Clin Med 2022; 11:jcm11020364. [PMID: 35054061 PMCID: PMC8780446 DOI: 10.3390/jcm11020364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To evaluate dosimetric impact of air cavities and their corresponding electron density correction for 0.35 tesla (T) Magnetic Resonance-guided Online Adaptive Radiation Therapy (MRgART) of prostate bed patients. METHODS Three 0.35 T MRgRT plans (anterior-posterior (AP) beam, AP-PA beams, and clinical intensity modulated radiation therapy (IMRT)) were generated on a prostate bed patient's (Patient A) planning computed tomography (CT) with artificial rectal air cavities of various sizes (0-3 cm, 0.5 cm increments). Furthermore, two 0.35 T MRgART plans ('Deformed' and 'Override') were generated on a prostate bed patient's (Patient B) daily magnetic resonance image (MRI) with artificial rectal air cavities of various sizes (0-3 cm, 0.5 cm increments) and on five prostate bed patient's (Patient 1-5) daily MRIs (2 MRIs: Fraction A and B) with real air cavities. For each MRgART plan, daily MRI electron density map was obtained by deformable registration with simulation CT. In the 'Deformed' plan, a clinical IMRT plan is calculated on the daily MRI with electron density map obtained from deformable registration only. In the 'Override' plan, daily MRI and simulation CT air cavities are manually corrected and bulk assigned air and water density on the registered electron density map, respectively. Afterwards, the clinical IMRT plan is calculated. RESULTS For the MRgRT plans, AP and AP-PA plans' rectum/rectal wall max dose increased with increasing air cavity size, where the 3 cm air cavity resulted in a 20%/17% and 13%/13% increase, relative to no air cavity, respectively. Clinical IMRT plan was robust to air cavity size, where dose change remained less than 1%. For the MRgART plans, daily MRI electron density maps, obtained from deformable registration with simulation CT, was unable to accurately produce electron densities reflecting the air cavities. However, for the artificial daily MRI air cavities, dosimetric change between 'Deformed' and 'Override' plan was small (<4%). Similarly, for the real daily MRI air cavities, clinical constraint changes between 'Deformed' and 'Override' plan was negligible and did not lead to change in clinical decision for adaptive planning except for two fractions. In these fractions, the 'Override' plan indicated that the bladder max dose and rectum V35.7 exceeded the constraint, while the 'Deformed' plan showed acceptable dose, although the absolute difference was only 0.3 Gy and 0.03 cc, respectively. CONCLUSION Clinical 0.35 T IMRT prostate bed plans are dosimetrically robust to air cavities. MRgART air cavity electron density correction shows clinically insignificant change and is not warranted on low-field systems.
Collapse
|
15
|
Elter A, Rippke C, Johnen W, Mann P, Hellwich E, Schwahofer A, Dorsch S, Buchele C, Klüter S, Karger CP. End-to-end test for fractionated online adaptive MR-guided radiotherapy using a deformable anthropomorphic pelvis phantom. Phys Med Biol 2021; 66. [PMID: 34845991 DOI: 10.1088/1361-6560/ac3e0c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Objective.In MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.Approach.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom. The phantom was adapted to perform 3D polymer gel (PG) dosimetry in the prostate and rectum. Furthermore, thermoluminescence detectors (TLDs) were placed at the center and on the surface of the prostate for additional dose measurements as well as for an external dose renormalization of the PG. For the end-to-end test, a total of five online adapted irradiations were applied in sequence with different bladder and rectum fillings, respectively.Main results.A good agreement of measured and planned dose was found represented by highγ-index passing rates (3%/3mmcriterion) of the PG evaluation of98.9%in the prostate and93.7%in the rectum. TLDs used for PG renormalization at the center of the prostate showed a deviation of-2.3%.Significance.The presented end-to-end test, which allows for 3D dose verification in the prostate and rectum, demonstrates the feasibility and accuracy of fractionated and online-adapted prostate irradiations in presence of inter-fractional anatomy changes. Such tests are of high clinical importance for the commissioning of new image-guided treatment procedures such as online adaptive MRgRT.
Collapse
Affiliation(s)
- A Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Rippke
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - W Johnen
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - P Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - E Hellwich
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - A Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Buchele
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - S Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - C P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
16
|
Yang B, Tang KK, Huang CY, Geng H, Lam WW, Wong YS, Tse MY, Lau KK, Cheung KY, Yu SK. Out-of-field dose and its constituent components for a 1.5 T MR-Linac. Phys Med Biol 2021; 66. [PMID: 34700308 DOI: 10.1088/1361-6560/ac3346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.
Collapse
Affiliation(s)
- Bin Yang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Ka Keung Tang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Chen-Yu Huang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Hui Geng
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Wai Wang Lam
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Yeung Sum Wong
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Mei Yan Tse
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Ka Ki Lau
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| |
Collapse
|
17
|
Marot M, Elter A, Mann P, Schwahofer A, Lang C, Johnen W, Körber SA, Beuthien-Baumann B, Gillmann C. Technical Note: On the feasibility of performing dosimetry in target and organ at risk using polymer dosimetry gel and thermoluminescence detectors in an anthropomorphic, deformable, and multimodal pelvis phantom. Med Phys 2021; 48:5501-5510. [PMID: 34260079 DOI: 10.1002/mp.15096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To assess the feasibility of performing dose measurements in the target (prostate) and an adjacent organ at risk (rectum) using polymer dosimetry gel and thermoluminescence detectors (TLDs) in an anthropomorphic, deformable, and multimodal pelvis phantom (ADAM PETer). METHODS The 3D printed prostate organ surrogate of the ADAM PETer phantom was filled with polymer dosimetry gel. Nine TLD600 (LiF:Mg,Ti) were installed in 3 × 3 rows on a specifically designed 3D-printed TLD holder. The TLD holder was inserted into the rectum at the level of the prostate and fixed by a partially inflated endorectal balloon. Computed tomography (CT) images were taken and treatment planning was performed. A prescribed dose of 4.5 Gy was delivered to the planning target volume (PTV). The doses measured by the dosimetry gel in the prostate and the TLDs in the rectum ("measured dose") were compared to the doses calculated by the treatment planning system ("planned dose") on a voxel-by-voxel basis. RESULTS In the prostate organ surrogate, the 3D-γ-index was 97.7% for the 3% dose difference and 3 mm distance to agreement criterium. In the center of the prostate organ surrogate, measured and planned doses showed only minor deviations (<0.1 Gy, corresponding to a percentage error of 2.22%). On the edges of the prostate, slight differences between planned and measured doses were detected with a maximum deviation of 0.24 Gy, corresponding to 5.3% of the prescribed dose. The difference between planned and measured doses in the TLDs was on average 0.08 Gy (range: 0.02-0.21 Gy), corresponding to 1.78% of the prescribed dose (range: 0.44%-4.67%). CONCLUSIONS The present study demonstrates the feasibility of using polymer dosimetry gel and TLDs for 3D and 1D dose measurements in the prostate and the rectum organ surrogates in an anthropomorphic, deformable and multimodal phantom. The described methodology might offer new perspectives for end-to-end tests in image-guided adaptive radiotherapy workflows.
Collapse
Affiliation(s)
- Mathieu Marot
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,HQ-Imaging GmbH, Heidelberg, Germany
| | - Andrea Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Clemens Lang
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Wibke Johnen
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stefan A Körber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bettina Beuthien-Baumann
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Clarissa Gillmann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
18
|
Shelley CE, Barraclough LH, Nelder CL, Otter SJ, Stewart AJ. Adaptive Radiotherapy in the Management of Cervical Cancer: Review of Strategies and Clinical Implementation. Clin Oncol (R Coll Radiol) 2021; 33:579-590. [PMID: 34247890 DOI: 10.1016/j.clon.2021.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
The complex and varied motion of the cervix-uterus target during external beam radiotherapy (EBRT) underscores the clinical benefits afforded by adaptive radiotherapy (ART) techniques. These gains have already been realised in the implementation of image-guided adaptive brachytherapy, where adapting to anatomy at each fraction has seen improvements in clinical outcomes and a reduction in treatment toxicity. With regards to EBRT, multiple adaptive strategies have been implemented, including a personalised internal target volume, offline replanning and a plan of the day approach. With technological advances, there is now the ability for real-time online ART using both magnetic resonance imaging and computed tomography-guided imaging. However, multiple challenges remain in the widespread dissemination of ART. This review investigates the ART strategies and their clinical implementation in EBRT delivery for cervical cancer.
Collapse
Affiliation(s)
- C E Shelley
- Department of Clinical Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK.
| | - L H Barraclough
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - C L Nelder
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - S J Otter
- Department of Clinical Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| | - A J Stewart
- Department of Clinical Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; University of Surrey, Guildford, UK
| |
Collapse
|
19
|
Liu X, Li C, Zhu J, Gong G, Sun H, Li X, Sun M, Zhang Z, Li B, Yin Y, Li Z. Technical Note: End-to-end verification of an MR-Linac using a dynamic motion phantom. Med Phys 2021; 48:5479-5489. [PMID: 34174099 DOI: 10.1002/mp.15057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE MR-Linac integrates an MRI scanner and a linear accelerator to provide adaptive radiation treatment. Superior tissue contrast and real-time imaging can give the clinicians confidence to reduce the margins of the planning target volume (PTV). The purpose of this study was to verify the dosimetric accuracy of an MR-Linac system in treating a moving target and assess the error with different motion patterns and adaptation methods. METHODS We performed an end-to-end test for Elekta Unity (Elekta) using the 4D Dynamic Thorax Phantom (CIRS MRgRT 008Z), comparing the measured and planned dose. The moving phantom had four measurement locations in the tumor, liver, kidney, and spinal cord regions with a PTW30013 ion chamber. For seven different motion patterns, we first acquired simulation CT using a slow-scanning protocol, based on which we generated reference plans. The treatment technique was the standard intensity-modulated radiation therapy (IMRT). We tested both adaptation workflows: the Adapt-to-Position (ATP) and the Adapt-to-Shape (ATS). The three-dimensional (3D) distribution was measured using a diode array phantom (Sun Nuclear Inc.) to check the dose distribution accuracy as part of the routine QA process. We also performed end-to-end tests on a conventional Linac. Finally, we used SPSS Statistics 22.0 (Inc., Chicago, IL, USA) for data analysis. RESULTS All pretreatment reference plans and delivered plans had excellent QA results with a better than 95% passing rate of relative gamma analysis (2%/2 mm criteria). The adaptive planning for MR-Linac produced quality plans. The measured dose in the target agreed with the calculated dose. CONCLUSIONS The adaptive treatment on the MR-Linac system investigated met the expected performance with tumor motions. The outline of the target could be visualized and accurately contoured on the 3D MR for online planning. Under different motion patterns, the difference between the measured and calculated dose was acceptable clinically.
Collapse
Affiliation(s)
- Xuechun Liu
- Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengqiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Zhu
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanzhong Gong
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Xu Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengdi Sun
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zicheng Zhang
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Radiation Oncology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Baosheng Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
20
|
Yang B, Wong YS, Lam WW, Geng H, Huang CY, Tang KK, Law WK, Ho CC, Nam PH, Cheung KY, Yu SK. Initial clinical experience of patient-specific QA of treatment delivery in online adaptive radiotherapy using a 1.5 T MR-Linac. Biomed Phys Eng Express 2021; 7. [PMID: 33882471 DOI: 10.1088/2057-1976/abfa80] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Purpose. This study aims to evaluate the performance of a commercial 1.5 T MR-Linac by analyzing its patient-specific quality assurance (QA) data collected during one full year of clinical operation.Methods and Materials. The patient-specific QA system consisted of offline delivery QA (DQA) and online calculation-based QA. Offline DQA was based on ArcCHECK-MR combined with an ionization chamber. Online QA was performed using RadCalc that calculated and compared the point dose calculation with the treatment planning system (TPS). A total of 24 patients with 189 treatment fractions were enrolled in this study. Gamma analysis was performed and the threshold that encompassed 95% of QA results (T95) was reported. The plan complexity metric was calculated for each plan and compared with the dose measurements to determine whether any correlation existed.Results. All point dose measurements were within 5% deviation. The mean gamma passing rates of the group data were found to be 96.8 ± 4.0% and 99.6 ± 0.7% with criteria of 2%/2mm and 3%/3mm, respectively. T95 of 87.4% and 98.2% was reported for the overall group with the two passing criteria, respectively. No statistically significant difference was found between adaptive treatments with adapt-to-position (ATP) and adapt-to-shape (ATS), whilst the category of pelvis data showed a better passing rate than other sites. Online QA gave a mean deviation of 0.2 ± 2.2%. The plan complexity metric was positively correlated with the mean dose difference whilst the complexity of the ATS cohort had larger variations than the ATP cohort.Conclusions. A patient-specific QA system based on ArcCHECK-MR, solid phantom and ionization chamber has been well established and implemented for validation of treatment delivery of a 1.5 T MR-Linac. Our QA data obtained over one year confirms that good agreement between TPS calculation and treatment delivery was achieved.
Collapse
Affiliation(s)
- B Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - Y S Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W W Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - H Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C Y Huang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K K Tang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W K Law
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C C Ho
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - P H Nam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K Y Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - S K Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| |
Collapse
|
21
|
Roberts DA, Sandin C, Vesanen PT, Lee H, Hanson IM, Nill S, Perik T, Lim SB, Vedam S, Yang J, Woodings SW, Wolthaus JWH, Keller B, Budgell G, Chen X, Li XA. Machine QA for the Elekta Unity system: A Report from the Elekta MR-linac consortium. Med Phys 2021; 48:e67-e85. [PMID: 33577091 PMCID: PMC8251771 DOI: 10.1002/mp.14764] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few years, magnetic resonance image‐guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems. Therefore, this report provides an overview of QA equipment and techniques for mechanical, dosimetric, and imaging performance of such systems and recommendation of the QA procedures, particularly for a 1.5T MR‐linac device. An overview of the system design and considerations for QA measurements, particularly the effect of the machine geometry and magnetic field on the radiation beam measurements is given. The effect of the magnetic field on measurement equipment and methods is reviewed to provide a foundation for interpreting measurement results and devising appropriate methods. And lastly, a consensus overview of recommended QA, appropriate methods, and tolerances is provided based on conventional QA protocols. The aim of this consensus work was to provide a foundation for QA protocols, comparative studies of system performance, and for future development of QA protocols and measurement methods.
Collapse
Affiliation(s)
- David A Roberts
- Elekta Limited, Cornerstone, London Road, Crawley, RH10 9BL, United Kingdom
| | - Carlos Sandin
- Elekta Limited, Cornerstone, London Road, Crawley, RH10 9BL, United Kingdom
| | | | - Hannah Lee
- Allegheny Health Network Cancer Institute, Pennsylvania, USA
| | - Ian M Hanson
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Simeon Nill
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Thijs Perik
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Seng Boh Lim
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Texas, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Texas, USA
| | - Simon W Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jochem W H Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Brian Keller
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Geoff Budgell
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, United Kingdom
| | - Xinfeng Chen
- Department of Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, USA
| | - X Allen Li
- Department of Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
22
|
Huang CY, Yang B, Lam WW, Tang KK, Li TC, Law WK, Cheung KY, Yu SK. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system. Phys Med Biol 2021; 66:065021. [PMID: 33607641 DOI: 10.1088/1361-6560/abe837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bolus is commonly used in MV photon radiotherapy to increase superficial dose and improve dose uniformity for treating shallow lesions. However, irregular patient body contours can cause unwanted air gaps between a bolus and patient skin. The resulting dosimetric errors could be exacerbated in MR-Linac treatments, as secondary electrons generated by photons are affected by the magnetic field. This study aimed to quantify the dosimetric effect of unwanted gaps between bolus and skin surface in an MR-Linac. A parallel-plate ionization chamber and EBT3 films were utilized to evaluate the surface dose under bolus with various gantry angles, field sizes, and different air gaps. The results of surface dose measurements were then compared to Monaco 5.40 Treatment Planning System (TPS) calculations. The suitability of using a parallel-plate chamber in MR-Linac measurement was validated by benchmarking the percentage depth dose and output factors with the microDiamond detector and air-filled ionization chamber measurements in water. A non-symmetric response of the parallel-plate chamber to oblique beams in the magnetic field was characterized. Unwanted air gaps significantly reduced the skin dose. For a frontal beam, skin dose was halved when there was a 5 mm gap, a much larger difference than in a conventional linac. Skin dose manifested a non-symmetric pattern in terms of gantry angle and gap size. The TPS overestimated skin dose in general, but shared the same trend with measurement when there was no air gap, or the gap size was larger than 5 mm. However, the calculated and measured results had a large discrepancy when the bolus-skin gap was below 5 mm. When treating superficial lesions, unwanted air gaps under the bolus will compromise the dosimetric goals. Our results highlight the importance of avoiding air gaps between bolus and skin when treating superficial lesions using an MR-Linac system.
Collapse
|
23
|
Axford A, Dikaios N, Roberts DA, Clark CH, Evans PM. An end-to-end assessment on the accuracy of adaptive radiotherapy in an MR-linac. Phys Med Biol 2021; 66:055021. [PMID: 33503604 DOI: 10.1088/1361-6560/abe053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop and demonstrate an end-to-end assessment procedure for adaptive radiotherapy (ART) within an MR-guided system. METHODS AND MATERIALS A 3D printed pelvic phantom was designed and constructed for use in this study. The phantom was put through the complete radiotherapy treatment chain, with planned internal changes made to model prostate translations and shape changes, allowing an investigation into three ART techniques commonly used. Absolute dosimetry measurements were made within the phantom using both gafchromic film and alanine. Comparisons between treatment planning system (TPS) calculations and measured dose values were made using the gamma evaluation with criteria of 3 mm/3% and 2 mm/2%. RESULTS Gamma analysis evaluations for each type of treatment plan adaptation investigated showed a very high agreement with pass rates for each experiment ranging from 98.10% to 99.70% and 92.60% to 97.55%, for criteria of 3%/3 mm and 2%/2 mm respectively. These pass rates were consistent for both shape and position changes. Alanine measurements further supported the results, showing an average difference of 1.98% from the TPS. CONCLUSION The end-to-end assessment procedure provided demanding challenges for treatment plan adaptations to demonstrate the capabilities and achieved high consistency in all findings.
Collapse
Affiliation(s)
- A Axford
- The Centre for Vision Speech and Signal Processing (CVSSP), University of Surrey, Guildford, Surrey, United Kingdom. Metrology for Medical Physics (MEMPHYS), National Physical Laboratory, Teddington, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Bernchou U, Christiansen RL, Bertelsen A, Tilly D, Riis HL, Jensen HR, Mahmood F, Hansen CR, Hansen VN, Schytte T, Brink C. End-to-end validation of the geometric dose delivery performance of MR linac adaptive radiotherapy. Phys Med Biol 2021; 66:045034. [PMID: 33321475 DOI: 10.1088/1361-6560/abd3ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical introduction of hybrid magnetic resonance (MR) guided radiotherapy (RT) delivery systems has led to the need to validate the end-to-end dose delivery performance on such machines. In the current study, an MR visible phantom was developed and used to test the spatial deviation between planned and delivered dose at two 1.5 T MR linear accelerator (MR linac) systems, including pre-treatment imaging, dose planning, online imaging, image registration, plan adaptation, and dose delivery. The phantom consisted of 3D printed plastic and MR visible silicone rubber. It was designed to minimise air gaps close to the radiochromic film used as a dosimeter. Furthermore, the phantom was designed to allow submillimetre, reproducible positioning of the film in the phantom. At both MR linac systems, 54 complete adaptive, MR guided RT workflow sessions were performed. To test the dose delivery performance of the MR linac systems in various adaptive RT (ART) scenarios, the sessions comprised a range of systematic positional shifts of the phantom and imaging or plan adaptation conditions. In each workflow session, the positional translation between the film and the adaptive planned dose was determined. The results showed that the accuracy of the MR linac systems was between 0.1 and 0.9 mm depending on direction. The highest mean deviance observed was in the posterior-anterior direction, and the direction of the error was consistent between centres. The precision of the systems was related to whether the workflow utilized the internal image registration algorithm of the MR linac. Workflows using the internal registration algorithm led to a worse precision (0.2-0.7 mm) compared to workflows where the algorithm was decoupled (0.2 mm). In summary, the spatial deviation between planned and delivered dose of MR-guided ART at the two MR linac systems was well below 1 mm and thus acceptable for clinical use.
Collapse
Affiliation(s)
- Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark. Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Saenz D, Papanikolaou N, Zoros E, Pappas E, Reiner M, Chew LT, Lim HY, Hancock S, Nebelsky A, Njeh C, Anagnostopoulos G. Robustness of single-isocenter multiple-metastasis stereotactic radiosurgery end-to-end testing across institutions. JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:223-232. [PMID: 33898086 PMCID: PMC8055241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The accuracy of stereotactic radiosurgery (SRS) to multiple metastases with a single-isocenter using high definition dynamic radiosurgery (HDRS) was evaluated across institutions. An SRS plan was delivered at six HDRS-capable institutions to an anthropomorphic phantom consisting of point, film, and 3D-gel dosimeters. Direct dose comparison and gamma analysis were used to evaluate the accuracy. Point measurements averaged across institutions were within 1.2±0.5%. The average gamma passing rate in the film was 96.6±2.2% (3%/2 mm). For targets within 4 cm of the isocenter, the 3D dosimetric gel gamma passing rate averaged across institutions was >90% (3%/2 mm). The targeting accuracy of high definition dynamic radiosurgery assessed by geometrical offset of the center of dose distributions across multiple institutions in this study was within 1 mm for targets within 4 cm of isocenter. Across variations in clinical practice, comparable dosimetry and localization is possible with this treatment planning and delivery technique.
Collapse
Affiliation(s)
- Daniel Saenz
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Emmanouil Zoros
- National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | | | | | - Sam Hancock
- Southeast Health, Cape Girardeau, Missouri, USA
| | | | | | | |
Collapse
|
26
|
De Deene Y, Wheatley M, Dong B, Roberts N, Jelen U, Waddington D, Liney G. Towards real-time 4D radiation dosimetry on an MRI-Linac. Phys Med Biol 2020; 65:225031. [PMID: 32947276 DOI: 10.1088/1361-6560/abb9f7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4D radiation dosimetry using a highly radiation-sensitive polymer gel dosimeter with real-time quantitative magnetic resonance imaging (MRI) readout is presented as a technique to acquire the accumulated radiation dose distribution during image-guided radiotherapy on an MRI-Linac. Optimized T 2-weighted Turbo-Spin-Echo (TSE) scans are converted into quantitative ΔR 2 maps and subsequently to radiation dose maps. The concept of temporal uncertainty is introduced as a metric of effective temporal resolution. A mathematical framework is presented to optimize the echo time of the TSE sequence in terms of dose resolution, and the trade-off between temporal resolution and dose resolution is discussed. The current temporal uncertainty achieved with the MAGAT gel dosimeter on a 1 T MRI-Linac is 3.8 s which is an order of magnitude better than what has been achieved until now. The potential of real-time 4D radiation dosimetry in a theragnostic MRI-Linac is demonstrated for two scenarios: an irradiation with three coplanar beams on a head phantom and a dynamic arc treatment on a cylindrical gel phantom using a rotating couch. The dose maps acquired on the MRI-Linac are compared with a treatment plan and with dose maps acquired on a clinical 3 T MRI scanner. 3D gamma map evaluations for the different modalities are provided. While the presented method demonstrates the potential of gel dosimetry for tracking the dose delivery during radiotherapy in 4D, a shortcoming of the MAGAT gel dosimeter is a retarded dose response. The effect of non-ideal radiofrequency pulses resulting from limitations in the specific absorption rate or B1-field inhomogeneity on the TSE acquired ΔR 2 values is analysed experimentally and by use of computational modelling with a Bloch simulator.
Collapse
Affiliation(s)
- Y De Deene
- Department of Engineering, Faculty of Science, Macquarie University, Sydney, Australia. School of Engineering, Faculty of Science, Macquarie University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Stark LS, Andratschke N, Baumgartl M, Bogowicz M, Chamberlain M, Dal Bello R, Ehrbar S, Girbau Garcia Z, Guckenberger M, Krayenbühl J, Pouymayou B, Rudolf T, Vuong D, Wilke L, Zamburlini M, Tanadini-Lang S. Dosimetric and geometric end-to-end accuracy of a magnetic resonance guided linear accelerator. Phys Imaging Radiat Oncol 2020; 16:109-112. [PMID: 33458353 PMCID: PMC7807549 DOI: 10.1016/j.phro.2020.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
The introduction of real-time imaging by magnetic resonance guided linear accelerators (MR-Linacs) enabled adaptive treatments and gating on the tumor position. Different end-to-end tests monitored the accuracy of our MR-Linac during the first year of clinical operation. We report on the stability of these tests covering a static, adaptive and gating workflow. Film measurements showed gamma passing rates of 96.4% ± 3.4% for the static tests (five measurements) and for the two adaptive tests 98.9% and 99.99%, respectively (criterion 2%/2mm). The gated point dose measurements in the breathing phantom were 2.7% lower than in the static phantom.
Collapse
Affiliation(s)
- Luisa S. Stark
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Nicolaus Andratschke
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Michael Baumgartl
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Marta Bogowicz
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Madalyne Chamberlain
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Riccardo Dal Bello
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Stefanie Ehrbar
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Zaira Girbau Garcia
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | | | - Jérôme Krayenbühl
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Bertrand Pouymayou
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Thomas Rudolf
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Diem Vuong
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | - Lotte Wilke
- University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland
| | | | | |
Collapse
|
28
|
|
29
|
Baldock C, Karger CP, Zaidi H. Gel dosimetry provides the optimal end‐to‐end quality assurance dosimetry for MR‐linacs. Med Phys 2020; 47:3259-3262. [DOI: 10.1002/mp.14239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Clive Baldock
- School of Engineering College of Science and Engineering University of Tasmania TAS Hobart 7005Australia
| | - Christian P. Karger
- Medical Physics in Radiation Oncology German Cancer Research Center (DKFZ), and National Center for Radiation Research in Oncology (NCRO) Heidelberg Institute for Radiation Oncology (HIRO) Im Neuenheimer Feld 280 Heidelberg Germany
| | | |
Collapse
|
30
|
Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 2020; 15:93. [PMID: 32370788 PMCID: PMC7201982 DOI: 10.1186/s13014-020-01524-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
Collapse
Affiliation(s)
- Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
- German Cancer Consortium (DKTK), 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Privata Campeggi 53, 27100, Pavia, Italy
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Centre Utrecht, PO box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|