1
|
Wen J, Xiong L, Wang S, Qiu X, Cui J, Peng F, Liu X, Lu J, Bian H, Chen D, Chang J, Yao Z, Fan S, Zhou D, Li Z, Liu J, Liu H, Chen X, Chen L. Prediction of intracranial electric field strength and analysis of treatment protocols in tumor electric field therapy targeting gliomas of the brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108490. [PMID: 39520874 DOI: 10.1016/j.cmpb.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Tumor Electric Field Therapy (TEFT) is a new treatment for glioblastoma cells with significant effect and few side effects. However, it is difficult to directly measure the intracranial electric field generated by TEFT, and the inability to control the electric field intensity distribution in the tumor target area also limits the clinical therapeutic effect of TEFT. It is a safe and effective way to construct an efficient and accurate prediction model of intracranial electric field intensity of TEFT by numerical simulation. METHODS Different from the traditional methods, in this study, the brain tissue was segmented based on the MRI data of patients with retained spatial location information, and the spatial position of the brain tissue was given the corresponding electrical parameters after segmentation. Then, a single geometric model of the head profile with the transducer array is constructed, which is assembled with an electrical parameter matrix containing tissue position information. After applying boundary conditions on the transducer, the intracranial electric field intensity could be solved in the frequency domain. The effects of transducer array mode, load voltage and voltage frequency on the intracranial electric field strength were further analyzed. Finally, planning system software was developed for optimizing TEFT treatment regimens for patients. RESULTS Experimental validation and comparison with existing results demonstrate the proposed method has a more efficient and pervasive modeling approach with higher computational accuracy while preserving the details of MRI brain tissue structure completely. In the optimization analysis of treatment protocols, it was found that increasing the load voltage could effectively increase the electric field intensity in the target area, while the effect of voltage frequency on the electric field intensity was very limited. CONCLUSIONS The results showed that adjusting the transducer array mode was the key method for making targeted treatment plans. The proposed method is capable prediction of intracranial electric field strength with high accuracy and provide guidance for the design of the TEFT therapy process. This study provides a valuable reference for the application of TEFT in clinical practice.
Collapse
Affiliation(s)
- Jun Wen
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lingzhi Xiong
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Shulu Wang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianqiao Cui
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410100, China
| | - Xiang Liu
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Jian Lu
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Haikuo Bian
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Jiusheng Chang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Zhengxi Yao
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Sheng Fan
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dan Zhou
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Chen
- The First Clinical College, China Medical University, Shenyang, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2024:oyae227. [PMID: 39401002 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke's Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
3
|
Wang M. Comparative analysis of non-invasive and invasive alternating electric fields therapy for malignant gliomas: a simulation study. Comput Methods Biomech Biomed Engin 2024:1-8. [PMID: 38859711 DOI: 10.1080/10255842.2024.2364820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Alternating electric fields (AEFs) at intermediate frequencies (100-300 kHz) and low intensities (1-3 V/cm) have shown promise as an effective approach for inhibiting cancer cell proliferation. However, a noticeable research gap exists in comparing the biophysical properties of invasive and non-invasive AEFs methods, and AEFs delivery strategies require further improvement. In this study, we constructed a realistic head model to simulate the effects of non-invasive and invasive AEFs on malignant gliomas. Additionally, a novel method was proposed involving the placement of a return electrode under the scalp. We simulated the electric field and temperature distributions in the brain tissue for each method. Our results underscore the advantages of invasive AEFs, showcasing their superior tumor-targeting abilities and reduced energy requirements. The analysis of brain tissue temperature changes reveals that non-invasive AEFs primarily generate heat at the scalp level, whereas invasive methods localize heat production within the tumor itself, thereby preserving surrounding healthy brain tissue. Our proposed invasive AEFs method also shows potential for selective electric field intervention. In conclusion, invasive AEFs demonstrate potential for precise and effective tumor treatment. Its enhanced targeting capabilities and limited impact on healthy tissue make it a promising avenue for further research in the realm of cancer treatment.
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Mikic N, Gentilal N, Cao F, Lok E, Wong ET, Ballo M, Glas M, Miranda PC, Thielscher A, Korshoej AR. Tumor-treating fields dosimetry in glioblastoma: Insights into treatment planning, optimization, and dose-response relationships. Neurooncol Adv 2024; 6:vdae032. [PMID: 38560348 PMCID: PMC10981464 DOI: 10.1093/noajnl/vdae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Tumor-treating fields (TTFields) are currently a Category 1A treatment recommendation by the US National Comprehensive Cancer Center for patients with newly diagnosed glioblastoma. Although the mechanism of action of TTFields has been partly elucidated, tangible and standardized metrics are lacking to assess antitumor dose and effects of the treatment. This paper outlines and evaluates the current standards and methodologies in the estimation of the TTFields distribution and dose measurement in the brain and highlights the most important principles governing TTFields dosimetry. The focus is on clinical utility to facilitate a practical understanding of these principles and how they can be used to guide treatment. The current evidence for a correlation between TTFields dose, tumor growth, and clinical outcome will be presented and discussed. Furthermore, we will provide perspectives and updated insights into the planning and optimization of TTFields therapy for glioblastoma by reviewing how the dose and thermal effects of TTFields are affected by factors such as tumor location and morphology, peritumoral edema, electrode array position, treatment duration (compliance), array "edge effect," electrical duty cycle, and skull-remodeling surgery. Finally, perspectives are provided on how to optimize the efficacy of future TTFields therapy.
Collapse
Affiliation(s)
- Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Fang Cao
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Edwin Lok
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eric T Wong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Matthew Ballo
- Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pedro C Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Axel Thielscher
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Nguyen H, Schubert KE, Chang E, Nie Y, Pohling C, Van Buskirk S, Yamamoto V, Zeng Y, Schulte RW, Patel CB. Electric field distributions in realistic 3D rat head models during alternating electric field (AEF) therapy: a computational study. Phys Med Biol 2023; 68:205015. [PMID: 37703902 DOI: 10.1088/1361-6560/acf98d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX 76706, United States of America
| | | | - Edwin Chang
- Stanford University, Stanford, CA 94305, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Christoph Pohling
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE 19716, United States of America
| | | | - Chirag B Patel
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States of America
| |
Collapse
|
6
|
Gentilal N, Naveh A, Marciano T, Miranda P. The Impact of Scalp's Temperature on the Choice of the Best Layout for TTFields Treatment. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2023.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Cruz N, Herculano-Carvalho M, Roque D, Faria CC, Cascão R, Ferreira HA, Reis CP, Matela N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15030928. [PMID: 36986790 PMCID: PMC10054750 DOI: 10.3390/pharmaceutics15030928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains a challenging disease, as it is the most common and deadly brain tumour in adults and has no curative solution and an overall short survival time. This incurability and short survival time means that, despite its rarity (average incidence of 3.2 per 100,000 persons), there has been an increased effort to try to treat this disease. Standard of care in newly diagnosed glioblastoma is maximal tumour resection followed by initial concomitant radiotherapy and temozolomide (TMZ) and then further chemotherapy with TMZ. Imaging techniques are key not only to diagnose the extent of the affected tissue but also for surgery planning and even for intraoperative use. Eligible patients may combine TMZ with tumour treating fields (TTF) therapy, which delivers low-intensity and intermediate-frequency electric fields to arrest tumour growth. Nonetheless, the blood–brain barrier (BBB) and systemic side effects are obstacles to successful chemotherapy in GBM; thus, more targeted, custom therapies such as immunotherapy and nanotechnological drug delivery systems have been undergoing research with varying degrees of success. This review proposes an overview of the pathophysiology, possible treatments, and the most (not all) representative examples of the latest advancements.
Collapse
Affiliation(s)
- Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuel Herculano-Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Diogo Roque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| |
Collapse
|
8
|
Jin T, Dou Z, Zhao Y, Jiang B, Xu J, Zhang B, Wei B, Dong F, Zhang J, Sun C. Skull defect increases the tumor treating fields strength without detrimental thermogenic effect: A computational simulating research. Cancer Med 2022; 12:1461-1470. [PMID: 35861406 PMCID: PMC9883554 DOI: 10.1002/cam4.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tumor treating fields (TTFields) is an FDA-approved adjuvant therapy for glioblastoma. The distribution of an applied electric field has been shown to be governed by distinct tissue structures and electrical conductivity. Of all the tissues the skull plays a significant role in modifying the distribution of the electric field due to its large impedance. In this study, we studied how remodeling of the skull would affect the therapeutic outcome of TTFields, using a computational approach. METHODS Head models were created from the head template ICBM152 and five realistic head models. The electric field distribution was simulated using the default TTFields array layout. To study the impact of the skull on the electric field, we compared three cases, namely, intact skull, defective skull, and insulating process, wherein a thin electrical insulating layer was added between the transducer and the hydrogel. The electric field strength and heating power were calculated using the FEM (finite element method). RESULTS Removing the skull flap increased the average field strength at the tumor site, without increasing the field strength of "brain". The ATVs of the supratentorial tumors were enhanced significantly. Meanwhile, the heating power of the gels increased, especially those overlapping the skull defect site. Insulation lightly decreased the electric field strength and significantly decreased the heating power in deep tumor models. CONCLUSION Our simulation results showed that a skull defect was beneficial for superficial tumors but had an adverse effect on deep tumors. Skull removal should be considered as an optional approach in future TTFields therapy to enhance its efficacy. An insulation process could be used as a joint option to reduce the thermogenic effect of skull defect. If excessive increase in heating power is observed in certain patients, insulating material could be used to mitigate overheating without sacrificing the therapeutic effect of TTFields.
Collapse
Affiliation(s)
- Taian Jin
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Zhangqi Dou
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yu Zhao
- Jiangsu Hailai Xinchuang Medical Technology Co., Ltd.WuxiJiangsuChina
| | - Biao Jiang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jinghong Xu
- Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Buyi Zhang
- Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Boxing Wei
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fei Dong
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina,Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina,Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
9
|
Gentilal N, Abend E, Naveh A, Marciano T, Balin I, Telepinsky Y, Miranda PC. Temperature and Impedance Variations During Tumor Treating Fields (TTFields) Treatment. Front Hum Neurosci 2022; 16:931818. [PMID: 35898934 PMCID: PMC9310567 DOI: 10.3389/fnhum.2022.931818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor Treating Fields (TTFields) is an FDA-approved cancer treatment technique used for glioblastoma multiforme (GBM). It consists in the application of alternating (100–500 kHz) and low-intensity (1–3 V/cm) electric fields (EFs) to interfere with the mitotic process of tumoral cells. In patients, these fields are applied via transducer arrays strategically positioned on the scalp using the NovoTAL™ system. It is recommended that the patient stays under the application of these fields for as long as possible. Inevitably, the temperature of the scalp increases because of the Joule effect, and it will remain above basal values for most part of the day. Furthermore, it is also known that the impedance of the head changes throughout treatment and that it might also play a role in the temperature variations. The goals of this work were to investigate how to realistically account for these increases and to quantify their impact in the choice of optimal arrays positions using a realistic head model with arrays positions obtained through NovoTAL™. We also studied the impedance variations based on the log files of patients who participated in the EF-14 clinical trial. Our computational results indicated that the layouts in which the arrays were very close to each other led to the appearance of a temperature hotspot that limited how much current could be injected which could consequently reduce treatment efficacy. Based on these data, we suggest that the arrays should be placed at least 1 cm apart from each other. The analysis of the impedance showed that the variations seen during treatment could be explained by three main factors: slow and long-term variations, array placement, and circadian rhythm. Our work indicates that both the temperature and impedance variations should be accounted for to improve the accuracy of computational results when investigating TTFields.
Collapse
Affiliation(s)
- Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
- *Correspondence: Nichal Gentilal
| | | | | | | | | | | | - Pedro Cavaleiro Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| |
Collapse
|
10
|
Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study. Biomech Model Mechanobiol 2022; 21:1133-1144. [PMID: 35477828 DOI: 10.1007/s10237-022-01580-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Tumor treating fields (TTFields) are a breakthrough in treating glioblastoma (GBM), whereas the intensity cannot be further enhanced, due to the limitation of scalp lesions. Skull remodeling (SR) surgery can elevate the treatment dose of TTFields in the intracranial foci. This study was aimed at exploring the characteristics of the skull modulated strategies toward TTFields augmentation. The simplified multiple-tissue-layer model (MTL) and realistic head (RH) model were reconstructed through finite element methods (FEM), to simulate the remodeling of the skull, which included skull drilling, thinning, and cranioplasty with PEEK, titanium, cerebrospinal fluid (CSF), connective tissue and autologous bone. Skull thinning could enhance the intensity of TTFields in the brain tumor, with a 10% of increase in average peritumoral intensity (API) by every 1 cm decrease in skull thickness. Cranioplasty with titanium accompanied the most enhancement of TTFields in the MTL model, but CSF was superior in TTFields enhancement when simulated in the RH model. Besides, API increased nonlinearly with the expansion of drilled burr holes. In comparison with the single drill replaced by titanium, nine burr holes could reach 96.98% of enhancement in API, but it could only reach 63.08% of enhancement under craniectomy of nine times skull defect area. Skull thinning and drilling could enhance API, which was correlated with the number and area of skull drilling. Cranioplasty with highly conductive material could also augment API, but might not provide clinical benefits as expected.
Collapse
|
11
|
Gentilal N, Naveh A, Marciano T, Bomzon Z, Telepinsky Y, Wasserman Y, Miranda PC. A computational study of the relation between the power density in the tumor and the maximum temperature in the scalp during Tumor Treating Fields (TTFields) therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4192-4195. [PMID: 34892148 DOI: 10.1109/embc46164.2021.9630071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work we investigated the relation between the power density in the tumor and the maximum temperature reached in the scalp during TTFields treatment for glioblastoma. We used a realistic head model to perform the simulations in COMSOL Multiphysics and we solved Pennes' equation to obtain the temperature distribution. Our results indicate that there might be a linear relation between these two quantities and that TTFields are safe from a thermal point of view.
Collapse
|
12
|
Biswas S, Kapitanova I, Divekar S, Grimm J, Butterwick IJ, Garren D, Kleinberg LR, Redmond KJ, Lacroix M, Mahadevan A, Forster KM. Targeting Accuracy Considerations for Simultaneous Tumor Treating Fields Antimitotic Therapy During Robotic Hypofractionated Radiation Therapy. Technol Cancer Res Treat 2021; 20:15330338211039135. [PMID: 34632866 PMCID: PMC8504228 DOI: 10.1177/15330338211039135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose: Tumor treating fields (TTFields) is a novel antimitotic treatment that was first proven effective for glioblastoma multiforme, now with trials for several extracranial indications underway. Several studies focused on concurrent TTFields therapy with radiation in the same time period, but were not given simultaneously. This study evaluates the targeting accuracy of simultaneous radiation therapy while TTFields arrays are in place and powered on, ensuring that radiation does not interfere with TTFields and TTFields does not interfere with radiation. This is one of several options to enable TTFields to begin several weeks sooner, and opens potential for synergistic effects of combined therapy. Methods: TTFields arrays were attached to a warm saline water bath and salt was added until the TTFields generator reached the maximal 2000 mA peak-to-peak current. A ball cube phantom containing 2 orthogonal films surrounded by fiducials was placed in the water phantom, CT scanned, and a radiation treatment plan with 58 isocentric beams was created using a 3 cm circular collimator. Fiducial tracking was used to deliver radiation, the films were scanned, and end-to-end targeting error was measured with vendor-supplied software. In addition, radiation effects on electric fields generated by the TTFields system were assessed by examining logfiles generated from the field generator. Results: With TTFields arrays in place and powered on, the robotic radiosurgery system achieved a final targeting result of 0.47 mm, which was well within the submillimeter specification. No discernible effects on TTFields current output beyond 0.3% were observed in the logfiles when the radiation beam pulsed on and off. Conclusion: A robotic radiosurgery system was used to verify that radiation targeting was not adversely affected when the TTFields arrays were in place and the TTFields delivery device was powered on. In addition, this study verified that radiation delivered simultaneously with TTFields did not interfere with the generation of the electric fields.
Collapse
Affiliation(s)
| | | | - Sabrina Divekar
- Sackler School of Medicine, 58408Tel Aviv University, New York, NY, USA
| | - Jimm Grimm
- 2780Geisinger Cancer Institute, Danville, PA, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gentilal N, Miranda PC. Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105706. [PMID: 32818721 DOI: 10.1016/j.cmpb.2020.105706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor Treating Fields (TTFields) is a technique currently used in the treatment of glioblastoma. It consists in applying an electric field (EF) with a frequency of 200 kHz using two pairs of transducer arrays placed on the head. Current should be injected at least 18 h/day and induce a minimum EF intensity of 1 V/cm at the tumor bed for the treatment to be effective. To avoid scalp burns, Optune, the device used to apply this technique in patients, monitors the temperature of the transducers and keeps them below 41 °C by reducing the injected current. The goal of this study was to quantify the impact of the uncertainty associated with the electric and thermal parameters on the predicted temperature of the transducers and of each tissue when TTFields were applied. METHODS We used a realistic head model, added the two pairs of transducers arrays on the scalp and a virtual lesion, mimicking a glioblastoma tumor in the right hemisphere. Minimum, standard and maximum values for the electric and thermal properties of each tissue were taken from the literature after an extensive review. We used finite element methods (COMSOL Multiphysics) to solve Laplace's equation for the electric potential and Pennes' equation for the temperature distribution. RESULTS We observed that the electric conductivity of the scalp and skull, as well as scalp's blood perfusion and thermal conductivity were the parameters to which tissue and transducers temperature were most sensitive to. Considering all simulations, scalp's maximum temperature was around 43.5 °C, skull's 42 °C, CSF's 41.2 °C and brain's 39.3 °C. According to the literature, for this temperature range, some physiological changes are predicted only for the brain. The average temperature of the transducers varied between 38.1 °C and 41.6 °C which suggests that modelling TTFields current injection is very sensitive to the parameters chosen. CONCLUSIONS Better knowledge of the physical properties of tissues and materials and how they change with the temperature is needed to improve the accuracy of these predictions. This information would likely decrease the predicted temperature maxima in the brain and thus help ascertaining TTFields safety from a thermal point of view.
Collapse
Affiliation(s)
- Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Pedro Cavaleiro Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
14
|
Gentilal N, Miranda PC. The impact of the uncertainty of biological tissue thermal parameters on the estimated maximum temperature during TTFields treatment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2283-2286. [PMID: 33018463 DOI: 10.1109/embc44109.2020.9175372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we evaluated the maximum temperature reached by the head tissues and transducers during TTFields treatment when the thermal parameters were changed. We used Pennes' equation to obtain the temperature distribution and we ran our studies using COMSOL Multiphysics. We observed that, among the parameters we tested, changes in the scalp thermal conductivity and grey matter blood perfusion were the ones that led to the highest temperature variations.Clinical Relevance- This work shows that the uncertainty regarding the thermal parameters of biological tissues might lead to significant changes in the temperature distribution when modeling heat transfer during TTFields therapy.
Collapse
|