1
|
Rostami A, Barzegar M, Usman M, Paloor SP, Mkanna AY, Al-Sabahi AF, Hammoud RW. Technical Note: Investigating of dosimetric leaf gap and leaf transmission factor variations across gantry and collimator angles in volumetric modulation arc therapy. J Appl Clin Med Phys 2024:e14523. [PMID: 39258581 DOI: 10.1002/acm2.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
PURPOSE This study investigates the influence of gantry and collimator angles on the dosimetric leaf gap (DLG) and leaf transmission factor (LTF) in a Varian LINAC equipped with rounded-end multi-leaf collimators (MLCs). While Varian guidelines recommend DLG measurements at zero degrees for both gantry and collimator, this research aims to address the knowledge gap by assessing DLG and LTF variations at different gantry and collimator angles. METHODS Measurements were conducted using a Varian TrueBeam LINAC with a Millennium 120-leaf MLC and Eclipse TPS version 16.1. The beams utilized in this study had energies of 6 MV, 10 MV, 6 FFF, and 10 FFF. LTF and DLG were determined using ionization chambers in solid water phantoms at various gantry angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). For each gantry angle, measurements were also taken at various collimator angles (0°, 45°, 90°, and 315°). Dosimetric impacts were evaluated through VMAT Picket Fence tests and patient-specific verification using portal dosimetry for 10 clinical VMAT plans. RESULTS LTF values showed no significant variation across gantry and collimator angles. However, DLG values exhibited notable differences depending on the gantry angle and were independent of the collimator angle. The highest DLG value was observed at a gantry angle of 270 degrees, while the lowest was at 90 degrees. The AXB DLGAverage (averaging seven measurements of DLGs at different gantry angles) model demonstrated the best agreement between measured and calculated dose distributions, indicating the importance of considering averaged DLG values across multiple gantry angles for accurate dose calculations. CONCLUSION Our study highlights the variability of DLG with gantry angle alterations, contrary to Varian guidelines recommending DLG measurements at zero gantry angle only. We advocate for utilizing an averaged DLG value from measurements across multiple gantry angles, as outlined in our methodology.
Collapse
Affiliation(s)
- Aram Rostami
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
| | - Mojtaba Barzegar
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
- Society for Brain Mapping and Therapeutic, Los Angles, California, USA
- Intelligent Quantitative Bio-Medical Imaging (IQBMI), Tehran, Iran
| | - Muhammad Usman
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
| | - Satheesh Prasad Paloor
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
| | - Abbass Yousef Mkanna
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
| | - Alla Fuad Al-Sabahi
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
| | - Rabih Wafiq Hammoud
- Radiation Oncology Department, National Center for Cancer Care and Research, Doha, Qatar
| |
Collapse
|
2
|
Kierkels RGJ, Hernandez V, Saez J, Angerud A, Hilgers GC, Surmann K, Schuring D, Minken AWH. Multileaf collimator characterization and modeling for a 1.5 T MR-linac using static synchronous and asynchronous sweeping gaps. Phys Med Biol 2024; 69:075004. [PMID: 38412538 DOI: 10.1088/1361-6560/ad2d7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Objective.The Elekta unity MR-linac delivers step-and-shoot intensity modulated radiotherapy plans using a multileaf collimator (MLC) based on the Agility MLC used on conventional Elekta linacs. Currently, details of the physical Unity MLC and the computational model within its treatment planning system (TPS)Monacoare lacking in published literature. Recently, a novel approach to characterize the physical properties of MLCs was introduced using dynamic synchronous and asynchronous sweeping gap (aSG) tests. Our objective was to develop a step-and-shoot version of the dynamic aSG test to characterize the Unity MLC and the computational MLC models in theMonacoandRayStationTPSs.Approach.Dynamic aSG were discretized into a step-and-shoot aSG by investigating the number of segments/sweep and the minimal number of monitor units (MU) per segment. The step-and-shoot aSG tests were compared to the dynamic aSG tests on a conventional linac at a source-to-detector distance of 143.5 cm, mimicking the Unity configuration. the step-and-shoot aSG tests were used to characterize the Unity MLC through measurements and dose calculations in both TPSs.Main results.The step-and-shoot aSGs tests with 100 segments and 5 MU/segment gave results very similar to the dynamic aSG experiments. The effective tongue-and-groove width of the Unity gradually increased up to 1.4 cm from the leaf tip end. The MLC models inRayStationandMonacoagreed with experimental data within 2.0% and 10%, respectively. The largest discrepancies inMonacowere found for aSG tests with >10 mm leaf interdigitation, which are non-typical for clinical plans.Significance.The step-and-shoot aSG tests accurately characterize the MLC in step-and-shoot delivery mode. The MLC model inRayStation2023B accurately describes the tongue-and-groove and leaf tip effects whereasMonacooverestimates the tongue-and-groove shadowing further away from the leaf tip end.
Collapse
Affiliation(s)
| | - Victor Hernandez
- Hospital Sant Joan de Reus, Department of Medical Physics, Reus, Spain
| | - Jordi Saez
- Hospital Clínic de Barcelona, Department of Radiation Oncology, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Hussein M, Angerud A, Saez J, Bogaert E, Lemire M, Barry M, Silvestre Patallo I, Shipley D, Clark CH, Hernandez V. Improving the modelling of a multi-leaf collimator with tilted leaf sides used in radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100543. [PMID: 38390588 PMCID: PMC10881418 DOI: 10.1016/j.phro.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background and purpose Multi-leaf collimators (MLCs) with tilted leaf sides have a complex transmission behaviour that is not easily matched by radiotherapy treatment planning systems (TPSs). We sought to develop an MLC model that can accurately match test fields and clinically relevant plans at different centres. Materials and methods Two new MLC models were developed and evaluated within a research version of a commercial TPS. Prototype I used adjusted-constant transmissions and Prototype II used variable transmissions at the tongue-and-groove and leaf-tip regions. Three different centres evaluated these prototypes for a tilted MLC and compared them with their initial MLC model using test fields and patient-specific quality-assurance measurements of clinically relevant plans. For the latter, gamma passing rates (GPR) at 2 %/2mm were recorded. Results For the prototypes the same set of MLC parameters could be used at all centres, with only a slight adjustment of the offset parameter. For centres A and C, average GPR were >95 % and within 0.5 % GPR difference between the standard, and prototype models. In center B, prototypes I and II improved the agreement in clinically relevant plans, with an increase in GPR of 2.3 % ± 0.8 % and 3.0 ± 0.8 %, respectively. Conclusions The prototype MLC models were either similar or superior to the initial MLC model, and simpler to configure because fewer trade-offs were required. Prototype I performed comparably to the more sophisticated Prototype II and its configuration can be easily standardized, which can be useful to reduce variability and improve safety in clinical practice.
Collapse
Affiliation(s)
- Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | | | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Evelien Bogaert
- Department of Radiation Oncology, Ghent University Hospital, Belgium
| | | | - Miriam Barry
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | | | - David Shipley
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Catharine H Clark
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
- Medical Physics, University College London Hospital, London, UK
- Medical Physics and Bioengineering, University College London, London, UK
| | - Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
4
|
Saez J, Bar-Deroma R, Bogaert E, Cayez R, Chow T, Clark CH, Esposito M, Feygelman V, Monti AF, Garcia-Miguel J, Gershkevitsh E, Goossens J, Herrero C, Hussein M, Khamphan C, Kierkels RGJ, Lechner W, Lemire M, Nevelsky A, Nguyen D, Paganini L, Pasler M, Fernando Pérez Azorín J, Ramos Garcia LI, Russo S, Shakeshaft J, Vieillevigne L, Hernandez V. Universal evaluation of MLC models in treatment planning systems based on a common set of dynamic tests. Radiother Oncol 2023; 186:109775. [PMID: 37385376 DOI: 10.1016/j.radonc.2023.109775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE To demonstrate the feasibility of characterising MLCs and MLC models implemented in TPSs using a common set of dynamic beams. MATERIALS AND METHODS A set of tests containing synchronous (SG) and asynchronous sweeping gaps (aSG) was distributed among twenty-five participating centres. Doses were measured with a Farmer-type ion chamber and computed in TPSs, which provided a dosimetric characterisation of the leaf tip, tongue-and-groove, and MLC transmission of each MLC, as well as an assessment of the MLC model in each TPS. Five MLC types and four TPSs were evaluated, covering the most frequent combinations used in radiotherapy departments. RESULTS Measured differences within each MLC type were minimal, while large differences were found between MLC models implemented in clinical TPSs. This resulted in some concerning discrepancies, especially for the HD120 and Agility MLCs, for which differences between measured and calculated doses for some MLC-TPS combinations exceeded 10%. These large differences were particularly evident for small gap sizes (5 and 10 mm), as well as for larger gaps in the presence of tongue-and-groove effects. A much better agreement was found for the Millennium120 and Halcyon MLCs, differences being within ± 5% and ± 2.5%, respectively. CONCLUSIONS The feasibility of using a common set of tests to assess MLC models in TPSs was demonstrated. Measurements within MLC types were very similar, but TPS dose calculations showed large variations. Standardisation of the MLC configuration in TPSs is necessary. The proposed procedure can be readily applied in radiotherapy departments and can be a valuable tool in IMRT and credentialing audits.
Collapse
Affiliation(s)
- Jordi Saez
- Hospital Clínic de Barcelona, Department of Radiation Oncology, Barcelona, Spain.
| | - Raquel Bar-Deroma
- Rambam Health Care Campus, Department of Radiotherapy, Division of Oncology, Haifa, Israel
| | - Evelien Bogaert
- Ghent University Hospital and Ghent University, Department of Radiation Oncology, Ghent, Belgium
| | - Romain Cayez
- Oscar Lambret Center, Department of Medical Physics, Lille, France
| | - Tom Chow
- Juravinski Hospital and Cancer Centre at Hamilton Health Sciences, Department of Medical Physics, Ontario, Canada
| | - Catharine H Clark
- National Physical Laboratory, Metrology for Medical Physics Centre, London TW11 0PX, UK; Radiotherapy Physics, University College London Hospital, 250 Euston Rd, London NW1 2PG, UK; Dept Medical Physics and Bioengineering, University College London, Malet Place, London WC1 6BT, UK
| | - Marco Esposito
- AUSL Toscana Centro, Medical Physics Unit, Florence, Italy; The Abdus Salam International Center for Theoretical, Trieste, Italy
| | | | - Angelo F Monti
- ASST GOM Niguarda, Department of Medical Physics, Milano, Italy
| | - Julia Garcia-Miguel
- Consorci Sanitari de Terrassa, Department of Radiation Oncology, Terrassa, Spain
| | - Eduard Gershkevitsh
- North Estonia Medical Centre, Department of Medical Physics, Tallinn, Estonia
| | - Jo Goossens
- Iridium Netwerk, Department of Medical Physics, Antwerp, Belgium
| | - Carmen Herrero
- Centro Médico de Asturias-IMOMA, Department of Medical Physics, Oviedo, Spain
| | - Mohammad Hussein
- National Physical Laboratory, Metrology for Medical Physics Centre, London TW11 0PX, UK
| | - Catherine Khamphan
- Institut du Cancer - Avignon Provence, Department of Medical Physics, Avignon, France
| | - Roel G J Kierkels
- Radiotherapiegroep, Department of Medical Physics, Arnhem/Deventer, the Netherlands
| | - Wolfgang Lechner
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - Matthieu Lemire
- CIUSSS de l'Est-de-l'Île-de-Montréal, Service de Radio-Physique, Montréal, Canada
| | - Alexander Nevelsky
- Rambam Health Care Campus, Department of Radiotherapy, Division of Oncology, Haifa, Israel
| | | | - Lucia Paganini
- Humanitas Clinical and Research Center, Radiotherapy and Radiosurgery Department, Rozzano, Italy
| | - Marlies Pasler
- Lake Constance Radiation Oncology Center, Department of Radiation Oncology, Singen, Friedrichshafen, Germany; Radiotherapy Hirslanden, St. Gallen, Switzerland
| | - José Fernando Pérez Azorín
- Medical Physics and Radiation Protection Department, Gurutzeta-Cruces University Hospital, Barakaldo, Spain; Biocruces Health Research Institute, Barakaldo, Spain
| | | | | | - John Shakeshaft
- Gold Coast University Hospital, ICON Cancer Centre, Gold Coast, Australia
| | - Laure Vieillevigne
- Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse, Department of Medical Physics, Toulouse, France
| | - Victor Hernandez
- Hospital Sant Joan de Reus, Department of Medical Physics, Reus, Spain; Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
5
|
An effective and optimized patient-specific QA workload reduction for VMAT plans after MLC-modelling optimization. Phys Med 2023; 107:102548. [PMID: 36842260 DOI: 10.1016/j.ejmp.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Many complexity metrics characterize modulated plans. First, this study aimed at identify the optimal complexity metrics to reduce workload associated to patient-specific quality assurance (PSQA) for our equipment and processes. Second, it intended to optimize our MLC modelling to improve measurement and calculation agreement with expectation of further reducing PSQA workload. METHODS Correlation and sensitivity at specificity equals to 1 were evaluated for PSQA results and different complexity metrics. Thresholds to stop PSQA were determined. After validation of the optimal complexity metric and threshold for our equipment and process, the MLC modelling was reviewed with a recently published methodology. This method is based on measurements with a Farmer-type ionization chamber of synchronous and asynchronous sweeping gap plans. Effect on the PSQA results and the identified threshold was investigated. RESULTS In our center, the most appropriate complexity metric for reducing our PSQA workload was the Modulation Complexity Score for VMAT (MCSv). The optimization of the MLC modelling significantly reduced the number of controlled plans, specifically for one of our two Varian Clinac. Any plan with a MCSv >= 0.34 is treated without PSQA. CONCLUSION This study rationalized and reduced our PSQA workload by approximately 30%. It is a continuing work with new TPS, machine or PSQA equipment. It encourages centers to re-evaluate their MLC modelling as well as assess the benefit of complexity metrics to streamline their PSQA workflow. An easier access, at least for reporting, at best for optimizing plans, into the TPS would be beneficial for the community.
Collapse
|
6
|
Hernandez V, Angerud A, Bogaert E, Hussein M, Lemire M, García-Miguel J, Saez J. Challenges in modeling the Agility multileaf collimator in treatment planning systems and current needs for improvement. Med Phys 2022; 49:7404-7416. [PMID: 36217283 PMCID: PMC10092639 DOI: 10.1002/mp.16016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Agility multileaf collimator (MLC) mounted in Elekta linear accelerators features some unique design characteristics, such as large leaf thickness, eccentric curvature at the leaf tip, and defocused leaf sides ('tilting'). These characteristics offer several advantages but modeling them in treatment planning systems (TPSs) is challenging. PURPOSE The goals of this study were to investigate the challenges faced when modeling the Agility in two commercial TPSs (Monaco and RayStation) and to explore how the implemented MLC models could be improved in the future. METHODS Four linear accelerators equipped with the Agility, located at different centers, were used for the study. Three centers use the RayStation TPS and the other one uses Monaco. For comparison purposes, data from four Varian linear accelerators with the Millennium 120 MLC were also included. Average doses measured with asynchronous sweeping gap tests were used to characterize and compare the characteristics of the Millennium and the Agility MLCs and to assess the MLC model in the TPSs. The FOURL test included in the ExpressQA package, provided by Elekta, was also used to evaluate the tongue-and-groove with radiochromic films. Finally, raytracing was used to investigate the impact of the MLC geometry and to understand the results obtained for each MLC. RESULTS The geometry of the Agility produces dosimetric effects associated with the rounded leaf end up to a distance 20 mm away from the leaf tip end measured at the isocenter plane. This affects the tongue-and-groove shadowing, which progressively increases along the distance to the tip end. The RayStation and Monaco TPSs did not account for this effect, which made trade-offs in the MLC parameters necessary and greatly varied the final MLC parameters used by different centers. Raytracing showed that these challenging leaf tip effects were directly related to the MLC geometry and that the characteristics mainly responsible for the large leaf tip effects of the Agility were its tilting design and its small source-to-collimator distance. CONCLUSIONS The MLC models implemented in RayStation and Monaco could not accurately reproduce the leaf tip effects for the Agility. Therefore, trade-offs are needed and the optimal MLC parameters are dependent on the specific characteristics of treatment plans. Refining the MLC models for the Agility to better approximate the measured leaf tip and tongue-and-groove effects would extend the validity of the MLC model, reduce the variability in the MLC parameters used by the community, and facilitate the standardization of the MLC configuration process.
Collapse
Affiliation(s)
- V Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona, Spain.,Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - A Angerud
- RaySearch Laboratories AB, Stockholm, Sweden
| | - E Bogaert
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - M Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - M Lemire
- Department of Medical Physics, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - J García-Miguel
- Department of Radiation Oncology, Consorci Sanitari de Terrassa, Barcelona, Spain
| | - J Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Geurts MW, Jacqmin DJ, Jones LE, Kry SF, Mihailidis DN, Ohrt JD, Ritter T, Smilowitz JB, Wingreen NE. AAPM MEDICAL PHYSICS PRACTICE GUIDELINE 5.b: Commissioning and QA of treatment planning dose calculations-Megavoltage photon and electron beams. J Appl Clin Med Phys 2022; 23:e13641. [PMID: 35950259 PMCID: PMC9512346 DOI: 10.1002/acm2.13641] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:
Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
8
|
Ghita M, Billiet C, Copot D, Verellen D, Ionescu CM. Model Calibration of Pharmacokinetic-Pharmacodynamic Lung Tumour Dynamics for Anticancer Therapies. J Clin Med 2022; 11:jcm11041006. [PMID: 35207279 PMCID: PMC8879872 DOI: 10.3390/jcm11041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Individual curves for tumor growth can be expressed as mathematical models. Herein we exploited a pharmacokinetic-pharmacodynamic (PKPD) model to accurately predict the lung growth curves when using data from a clinical study. Our analysis included 19 patients with non-small cell lung cancer treated with specific hypofractionated regimens, defined as stereotactic body radiation therapy (SBRT). The results exhibited the utility of the PKPD model for testing growth hypotheses of the lung tumor against clinical data. The model fitted the observed progression behavior of the lung tumors expressed by measuring the tumor volume of the patients before and after treatment from CT screening. The changes in dynamics were best captured by the parameter identified as the patients’ response to treatment. Median follow-up times for the tumor volume after SBRT were 126 days. These results have proven the use of mathematical modeling in preclinical anticancer investigations as a potential prognostic tool.
Collapse
Affiliation(s)
- Maria Ghita
- Research Group of Dynamical Systems and Control, Ghent University, 9052 Ghent, Belgium; (M.G.); (D.C.)
- Faculty of Medicine and Health Sciences, Antwerp University, 2610 Wilrijk, Belgium
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, 9052 Ghent, Belgium
- Cancer Research Institute Ghent, 9052 Ghent, Belgium
| | - Charlotte Billiet
- Department of Radiation Oncology, Iridium Cancer Network—GZA Hospitals Sint Augustinus, 2610 Wilrijk, Belgium; (C.B.); (D.V.)
- Department of Radiotherapy, Faculty of Medicine and Health Sciences, Antwerp University, 2610 Wilrijk, Belgium
| | - Dana Copot
- Research Group of Dynamical Systems and Control, Ghent University, 9052 Ghent, Belgium; (M.G.); (D.C.)
- Faculty of Medicine and Health Sciences, Antwerp University, 2610 Wilrijk, Belgium
| | - Dirk Verellen
- Department of Radiation Oncology, Iridium Cancer Network—GZA Hospitals Sint Augustinus, 2610 Wilrijk, Belgium; (C.B.); (D.V.)
- Department of Radiotherapy, Faculty of Medicine and Health Sciences, Antwerp University, 2610 Wilrijk, Belgium
| | - Clara Mihaela Ionescu
- Research Group of Dynamical Systems and Control, Ghent University, 9052 Ghent, Belgium; (M.G.); (D.C.)
- Faculty of Medicine and Health Sciences, Antwerp University, 2610 Wilrijk, Belgium
- Department of Automatic Control, Technical University of Cluj Napoca, 400114 Cluj, Romania
- Correspondence: ; Tel.: +32-9-264-5608
| |
Collapse
|
9
|
Frigo SP, Ohrt J, Suh Y, Balter P. Interinstitutional beam model portability study in a mixed vendor environment. J Appl Clin Med Phys 2021; 22:37-50. [PMID: 34643323 PMCID: PMC8664150 DOI: 10.1002/acm2.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
A 6 MV flattened beam model for a Varian TrueBeamSTx c‐arm treatment delivery system in RayStation, developed and validated at one institution, was implemented and validated at another institution. The only parameter value adjustments were to accommodate machine output at the second institution. Validation followed MPPG 5.a. recommendations, with particular attention paid to IMRT and VMAT deliveries. With this minimal adjustment, the model passed validation across a broad spectrum of treatment plans, measurement devices, and staff who created the test plans and executed the measurements. This work demonstrates the possibility of using a single template model in the same treatment planning system with matched machines in a mixed vendor environment.
Collapse
Affiliation(s)
- Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jared Ohrt
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yelin Suh
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Hansen JB, Frigo SP. Evaluation of candidate template beam models for a matched TrueBeam treatment delivery system. J Appl Clin Med Phys 2021; 22:92-103. [PMID: 34036726 PMCID: PMC8200503 DOI: 10.1002/acm2.13278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To explore candidate RayStation beam models to serve as a class-specific template for a TrueBeam treatment delivery system. METHODS Established validation techniques were used to evaluate three photon beam models: a clinically optimized model from the authors' institution, the built-in RayStation template, and a hybrid consisting of the RayStation template except substituting average MLC parameter values from a recent IROC survey. Comparisons were made for output factors, dose profiles from open fields, as well as representative VMAT test plans. RESULTS For jaw-defined output factors, each beam model was within 1.6% of expected published values. Similarly, the majority (57-66%) of jaw-defined dose curves from each model had a gamma pass rate >95% (2% / 3 mm, 20% threshold) when compared to TrueBeam representative beam data. For dose curves from MPPG 5.a MLC-defined fields, average gamma pass rates (1% / 1 mm, 20% threshold) were 92.9%, 85.1%, and 86.0% for the clinical, template, and hybrid models, respectively. For VMAT test plans measured with a diode array detector, median dose differences were 0.6%, 1.3%, and 1.1% for the clinical, template, and hybrid models, respectively. For in-phantom ionization chamber measurements with the same VMAT test plans, the average percent difference was -0.3%, -1.4%, and -1.0% for the clinical, template, and hybrid models, respectively. CONCLUSION Beam model templates taken from the vendor and aggregate results within the community were both reasonable starting points, but neither approach was as optimal as a clinically tuned model, the latter producing better agreement with all validation measurements. Given these results, the clinically optimized model represents a better candidate as a consensus template. This can benefit the community by reducing commissioning time and improving dose calculation accuracy for matched TrueBeam treatment delivery systems.
Collapse
Affiliation(s)
- Jon B. Hansen
- Department of Human OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| | - Sean P. Frigo
- Department of Human OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
11
|
Hernandez V, Saez J, Angerud A, Cayez R, Khamphan C, Nguyen D, Vieillevigne L, Feygelman V. Dosimetric leaf gap and leaf trailing effect in a double-stacked multileaf collimator. Med Phys 2021; 48:3413-3424. [PMID: 33932237 DOI: 10.1002/mp.14914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To investigate (i) the dosimetric leaf gap (DLG) and the effect of the "trailing distance" between leaves from different multileaf collimator (MLC) layers in Halcyon systems and (ii) the ability of the currently available treatment planning systems (TPSs) to approximate this effect. METHODS DICOM plans with transmission beams and sweeping gap tests were created in Python for measuring the DLG for each MLC layer independently and for both layers combined. In clinical Halcyon plans both MLC layers are interchangeably used and leaves from different layers are offset, thus forming a trailing pattern. To characterize the impact of such configuration, new tests called "trailing sweeping gaps" were designed and created where the leaves from one layer follow the leaves from the other layer at a fixed "trailing distance" t between the tips. Measurements were carried out on five Halcyons SX2 from different institutions and calculations from both the Eclipse and RayStation TPSs were compared with measurements. RESULTS The dose accumulated during a sweeping gap delivery progressively increased with the trailing distance t . We call this "the trailing effect." It is most pronounced for t between 0 and 5 mm, although some changes were obtained up to 20 mm. The dose variation was independent of the gap size. The measured DLG values also increased with t up to 20 mm, again with the steepest variation between 0 and 5 mm. Measured DLG values were negative at t = 0 (the leaves from both layers at the same position) but changed sign for t ≥ 1 mm, in line with the positive DLG sign usually observed with single-layer rounded-end MLCs. The Eclipse TPS does not explicitly model the leaf tip and, as a consequence, could not predict the dose reduction due to the trailing effect. This resulted in dose discrepancies up to +10% and -8% for the 5 mm sweeping gap and up to ±5% for the 10 mm one depending on the distance t . RayStation implements a simple model of the leaf tip that was able to approximate the trailing effect and improved the agreement with measured doses. In particular, with a prototype version of RayStation that assigned a higher transmission at the leaf tip the agreement with measured doses was within ±3% even for the 5 mm gap. The five Halcyon systems behaved very similarly but differences in the DLG around 0.2 mm were found across different treatment units and between MLC layers from the same system. The DLG for the proximal layer was consistently higher than for the distal layer, with differences ranging between 0.10 mm and 0.24 mm. CONCLUSIONS The trailing distance between the leaves from different layers substantially affected the doses delivered by sweeping gaps and the measured DLG values. Stacked MLCs introduce a new level of complexity in TPSs, which ideally need to implement an explicit model of the leaf tip in order to reproduce the trailing effect. Dynamic tests called "trailing sweeping gaps" were designed that are useful for characterizing and commissioning dual-layer MLC systems.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, 43204, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | | | - Romain Cayez
- Department of Medical Physics, Oscar Lambret Center, 59000, Lille, France
| | - Catherine Khamphan
- Medical Physics Department, Institut Sainte-Catherine, 84000, Avignon, France
| | - Daniel Nguyen
- Centre de Radiothérapie de Mâcon, 71000, Mâcon, France
| | - Laure Vieillevigne
- Department of Medical Physics, Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse, 31059, Toulouse, France.,Centre de Recherche en Cancérologie de Toulouse UMR1037 INSERM, Université Toulouse 3-ERL5294 CNRS, Oncopole, 31037, Toulouse, France
| | - Vladimir Feygelman
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, 12902, Florida, USA
| |
Collapse
|
12
|
Richmond N, Angerud A, Tamm F, Allen V. Comparison of the RayStation photon Monte Carlo dose calculation algorithm against measured data under homogeneous and heterogeneous irradiation geometries. Phys Med 2021; 82:87-99. [PMID: 33601165 DOI: 10.1016/j.ejmp.2021.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This work compares Monte Carlo dose calculations performed using the RayStation treatment planning system against data measured on a Varian Truebeam linear accelerator with 6 MV and 10 MV FFF photon beams. METHODS The dosimetric performance of the RayStation Monte Carlo calculations was evaluated in a variety of irradiation geometries employing homogeneous and heterogeneous phantoms. Profile and depth dose comparisons against measurement were carried out in relative mode using the gamma index as a quantitative measure of similarity within the central high dose regions. RESULTS The results demonstrate that the treatment planning system dose calculation engine agrees with measurement to within 2%/1 mm for more than 95% of the data points in the high dose regions for all test cases. A systematic underestimation was observed at the tail of the profile penumbra and out of field, with mean differences generally <0.5 mm or 1% of curve dose maximum respectively. Out of field agreement varied between evaluated beam models. CONCLUSIONS The RayStation implementation of photon Monte Carlo dose calculations show good agreement with measured data for the range of scenarios considered in this work and is deemed sufficiently accurate for introduction into clinical use.
Collapse
Affiliation(s)
- Neil Richmond
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, Freeman Hospital, Freeman Road, Newcastle upon Tyne NE7 7DN, UK.
| | | | | | - Vincent Allen
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, Freeman Hospital, Freeman Road, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
13
|
Saini A, Tichacek C, Johansson W, Redler G, Zhang G, Moros EG, Qayyum M, Feygelman V. Unlocking a closed system: dosimetric commissioning of a ring gantry linear accelerator in a multivendor environment. J Appl Clin Med Phys 2021; 22:21-34. [PMID: 33452738 PMCID: PMC7882119 DOI: 10.1002/acm2.13116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/10/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
The Halcyon™ platform is self‐contained, combining a treatment planning (Eclipse) system TPS) with information management and radiation delivery components. The standard TPS beam model is configured and locked down by the vendor. A portal dosimetry‐based system for patient‐specific QA (PSQA) is also included. While ensuring consistency across the user base, this closed model may not be optimal for every department. We set out to commission independent TPS (RayStation 9B, RaySearch Laboratories) and PSQA (PerFraction, Sun Nuclear Corp.) systems for use with the Halcyon linac. The output factors and PDDs for very small fields (0.5 × 0.5 cm2) were collected to augment the standard Varian dataset. The MLC leaf‐end parameters were estimated based on the various static and dynamic tests with simple model fields and honed by minimizing the mean and standard deviation of dose difference between the ion chamber measurements and RayStation Monte Carlo calculations for 15 VMAT and IMRT test plans. Two chamber measurements were taken per plan, in the high (isocenter) and lower dose regions. The ratio of low to high doses ranged from 0.4 to 0.8. All percent dose differences were expressed relative to the local dose. The mean error was 0.0 ± 1.1% (TG119‐style confidence limit ± 2%). Gamma analysis with the helical diode array using the standard 3%Global/2mm criteria resulted in the average passing rate of 99.3 ± 0.5% (confidence limit 98.3%–100%). The average local dose error for all detectors across all plans was 0.2% ± 5.3%. The ion chamber results compared favorably with our recalculation with Eclipse and PerFraction, as well as with several published Eclipse reports. Dose distribution gamma analysis comparisons between RayStation and PerFraction with 2%Local/2mm criteria yielded an average passing rate of 98.5% ± 0.8% (confidence limit 96.9%–100%). It is feasible to use the Halcyon accelerator with independent planning and verification systems without sacrificing dosimetric accuracy.
Collapse
Affiliation(s)
- Amarjit Saini
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Chris Tichacek
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - William Johansson
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | |
Collapse
|