1
|
Galeone C, Steinsberger T, Donetti M, Martire MC, Milian FM, Sacchi R, Vignati A, Volz L, Durante M, Giordanengo S, Graeff C. Real-time delivered dose assessment in carbon ion therapy of moving targets. Phys Med Biol 2024; 69:205001. [PMID: 39299266 DOI: 10.1088/1361-6560/ad7d59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective. Real-time adaptive particle therapy is being investigated as a means to maximize the treatment delivery accuracy. To react to dosimetric errors, a system for fast and reliable verification of the agreement between planned and delivered doses is essential. This study presents a clinically feasible, real-time 4D-dose reconstruction system, synchronized with the treatment delivery and motion of the patient, which can provide the necessary feedback on the quality of the delivery.Approach. A GPU-based analytical dose engine capable of millisecond dose calculation for carbon ion therapy has been developed and interfaced with the next generation of the dose delivery system (DDS) in use at Centro Nazionale di Adroterapia Oncologica (CNAO). The system receives the spot parameters and the motion information of the patient during the treatment and performs the reconstruction of the planned and delivered 4D-doses. After each iso-energy layer, the results are displayed on a graphical user interface by the end of the spill pause of the synchrotron, permitting verification against the reference dose. The framework has been verified experimentally at CNAO for a lung cancer case based on a virtual phantom 4DCT. The patient's motion was mimicked by a moving Ionization Chamber (IC) 2D-array.Mainresults. For the investigated static and 4D-optimized treatment delivery cases, real-time dose reconstruction was achieved with an average pencil beam dose calculation speed up to more than one order of magnitude smaller than the spot delivery. The reconstructed doses have been benchmarked against offline log-file based dose reconstruction with the TRiP98 treatment planning system, as well as QA measurements with the IC 2D-array, where an average gamma-index passing rate (3%/3 mm) of 99.8% and 98.3%, respectively, were achieved.Significance. This work provides the first real-time 4D-dose reconstruction engine for carbon ion therapy. The framework integration with the CNAO DDS paves the way for a swift transition to the clinics.
Collapse
Affiliation(s)
- C Galeone
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - T Steinsberger
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M Donetti
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - M C Martire
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
| | - F M Milian
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
- Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - R Sacchi
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - A Vignati
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - L Volz
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M Durante
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Condensed Matter Physics, TU Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica, Università Federico II, Napoli, Italy
| | - S Giordanengo
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - C Graeff
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Burlacu T, Lathouwers D, Perkó Z. Yet anOther Dose Algorithm (YODA) for independent computations of dose and dose changes due to anatomical changes. Phys Med Biol 2024; 69:165003. [PMID: 39008989 DOI: 10.1088/1361-6560/ad6373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective.To assess the viability of a physics-based, deterministic and adjoint-capable algorithm for performing treatment planning system independent dose calculations and for computing dosimetric differences caused by anatomical changes.Approach.A semi-numerical approach is employed to solve two partial differential equations for the proton phase-space density which determines the deposited dose. Lateral hetereogeneities are accounted for by an optimized (Gaussian) beam splitting scheme. Adjoint theory is applied to approximate the change in the deposited dose caused by a new underlying patient anatomy.Main results.The dose engine's accuracy was benchmarked through three-dimensional gamma index comparisons against Monte Carlo simulations done in TOPAS. For a lung test case, the worst passing rate with (1 mm, 1%, 10% dose cut-off) criteria is 94.55%. The effect of delivering treatment plans on repeat CTs was also tested. For non-robustly optimized plans the adjoint component was accurate to 5.7% while for a robustly optimized plan it was accurate to 4.8%.Significance.Yet anOther Dose Algorithm is capable of accurate dose computations in both single and multi spot irradiations when compared to TOPAS. Moreover, it is able to compute dosimetric differences due to anatomical changes with small to moderate errors thereby facilitating its use for patient-specific quality assurance in online adaptive proton therapy.
Collapse
Affiliation(s)
- Tiberiu Burlacu
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- HollandPTC consortium-Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands
| | - Danny Lathouwers
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- HollandPTC consortium-Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands
| | - Zoltán Perkó
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- HollandPTC consortium-Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
3
|
Duetschler A, Winterhalter C, Meier G, Safai S, Weber DC, Lomax AJ, Zhang Y. A fast analytical dose calculation approach for MRI-guided proton therapy. Phys Med Biol 2023; 68:195020. [PMID: 37750045 DOI: 10.1088/1361-6560/acf90d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Objective.Magnetic resonance (MR) is an innovative technology for online image guidance in conventional radiotherapy and is also starting to be considered for proton therapy as well. For MR-guided therapy, particularly for online plan adaptations, fast dose calculation is essential. Monte Carlo (MC) simulations, however, which are considered the gold standard for proton dose calculations, are very time-consuming. To address the need for an efficient dose calculation approach for MRI-guided proton therapy, we have developed a fast GPU-based modification of an analytical dose calculation algorithm incorporating beam deflections caused by magnetic fields.Approach.Proton beams (70-229 MeV) in orthogonal magnetic fields (0.5/1.5 T) were simulated using TOPAS-MC and central beam trajectories were extracted to generate look-up tables (LUTs) of incremental rotation angles as a function of water-equivalent depth. Beam trajectories are then reconstructed using these LUTs for the modified ray casting dose calculation. The algorithm was validated against MC in water, different materials and for four example patient cases, whereby it has also been fully incorporated into a treatment plan optimisation regime.Main results.Excellent agreement between analytical and MC dose distributions could be observed with sub-millimetre range deviations and differences in lateral shifts <2 mm even for high densities (1000 HU). 2%/2 mm gamma pass rates were comparable to the 0 T scenario and above 94.5% apart for the lung case. Further, comparable treatment plan quality could be achieved regardless of magnetic field strength.Significance.A new method for accurate and fast proton dose calculation in magnetic fields has been developed and successfully implemented for treatment plan optimisation.
Collapse
Affiliation(s)
- Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Carla Winterhalter
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Gabriel Meier
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
4
|
The status of medical physics in radiotherapy in China. Phys Med 2021; 85:147-157. [PMID: 34010803 DOI: 10.1016/j.ejmp.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc. MATERIALS AND METHODS: The information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations. RESULTS By 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018. CONCLUSIONS Demand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.
Collapse
|