1
|
Salvador-Ribés C, Soler-Pons C, Sánchez-García MJ, Fechter T, Olivas C, Torres-Espallardo I, Pérez-Calatayud J, Baltas D, Mix M, Martí-Bonmatí L, Carles M. Open-source phantom with dedicated in-house software for image quality assurance in hybrid PET systems. EJNMMI Phys 2025; 12:35. [PMID: 40192938 PMCID: PMC11977063 DOI: 10.1186/s40658-025-00741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Patients' diagnosis, treatment and follow-up increasingly rely on multimodality imaging. One of the main limitations for the optimal implementation of hybrid systems in clinical practice is the time and expertise required for applying standardized protocols for equipment quality assurance (QA). Experimental phantoms are commonly used for this purpose, but they are often limited to a single modality and single quality parameter, lacking automated analysis capabilities. In this study, we developed a multimodal 3D-printed phantom and software for QA in positron emission tomography (PET) hybrid systems, with computed tomography (CT) or magnetic resonance (MR), by assessing signal, spatial resolution, radiomic features, co-registration and geometric distortions. RESULTS Phantom models and Python software for the proposed QA are available to download, and a user-friendly plugin compatible with the open-source 3D-Slicer software has been developed. The QA viability was proved by characterizing a Philips-Gemini-TF64-PET/CT in terms of signal response (mean, µ), intrinsic variability for three consecutive measurements (daily variation coefficient, CoVd) and reproducibility over time (variation coefficient across 5 months, CoVm). For this system, averaged recovery coefficient for activity concentration was µ = 0.90 ± 0.08 (CoVd = 0.6%, CoVm = 9%) in volumes ranging from 7 to 42 ml. CT calibration-curve averaged over time was HU = ( 951 ± 12 ) × density - ( 944 ± 15 ) with variability of slope and y-intercept of (CoVd = 0.4%, CoVm = 1.2%) and (CoVd = 0.4%, CoVm = 1.6%), respectively. Radiomics reproducibility resulted in (CoVd = 18%, CoVm = 30%) for PET and (CoVd = 15%, CoVm = 22%) for CT. Co-registration was assessed by Dice-Similarity-Coefficient (DSC) along 37.8 cm in superior-inferior (z) direction (well registered if DSC ≥ 0.91 and Δz ≤ 2 mm), resulting in 3/7 days well co-registered. Applicability to other scanners was additionally proved with Philips-Vereos-PET/CT (V), Siemens-Biograph-Vison-600-PET/CT (S) and GE-SIGNA-PET/MR (G). PET concentration accuracy was (µ = 0.86, CoVd = 0.3%) for V, (µ = 0.87, CoVd = 0.8%) for S, and (µ = 1.10, CoVd = 0.34%) for G. MR(T2) was well co-registered with PET in 3/4 cases, did not show significant distortion within a transaxial diameter of 27.8 cm and along 37 cm in z, and its radiomic variability was CoVd = 13%. CONCLUSIONS Open-source QA protocol for PET hybrid systems has been presented and its general applicability has been proved. This package facilitates simultaneously simple and semi-automated evaluation for various imaging modalities, providing a complete and efficient QA solution.
Collapse
Affiliation(s)
- Carmen Salvador-Ribés
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, 46026, Valencia, Spain.
| | - Carina Soler-Pons
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, 46026, Valencia, Spain
| | | | - Tobias Fechter
- Division of Medical Physics, Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Consuelo Olivas
- Medical Imaging Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Irene Torres-Espallardo
- Medical Imaging Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - José Pérez-Calatayud
- Department of Radiation Oncology, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, University Medical Center Freiburg, 79106, Freiburg, Germany
- Nuclear Medicine Division, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Science, Stellenbosch University, Stellenbosch, South Africa
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, 46026, Valencia, Spain
- Medical Imaging Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Montserrat Carles
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, 46026, Valencia, Spain
| |
Collapse
|
2
|
Keenan KE, Jordanova KV, Ogier SE, Tamada D, Bruhwiler N, Starekova J, Riek J, McCracken PJ, Hernando D. Phantoms for Quantitative Body MRI: a review and discussion of the phantom value. MAGMA (NEW YORK, N.Y.) 2024; 37:535-549. [PMID: 38896407 PMCID: PMC11417080 DOI: 10.1007/s10334-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.
Collapse
Affiliation(s)
- Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA.
| | - Kalina V Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
| | - Stephen E Ogier
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | | | - Natalie Bruhwiler
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
| | | | | | | | | |
Collapse
|
3
|
Reiter T, Weiss I, Weber OM, Bauer WR. Three-dimensional assessment of image distortion induced by active cardiac implants in 3.0T CMR. Sci Rep 2024; 14:11130. [PMID: 38750100 PMCID: PMC11096309 DOI: 10.1038/s41598-024-61283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
CMR at 3.0T in the presence of active cardiac implants remains a challenge due to susceptibility artifacts. Beyond a signal void that cancels image information, magnetic field inhomogeneities may cause distorted appearances of anatomical structures. Understanding influencing factors and the extent of distortion are a first step towards optimizing the image quality of CMR with active implants at 3.0T. All measurements were obtained at a clinical 3.0T scanner. An in-house designed phantom with a 3D cartesian grid of water filled spheres was used to analyze the distortion caused by four representative active cardiac devices (cardiac loop recorder, pacemaker, 2 ICDs). For imaging a gradient echo (3D-TFE) sequence and a turbo spin echo (2D-TSE) sequence were used. The work defines metrics to quantify the different features of distortion such as changes in size, location and signal intensity. It introduces a specialized segmentation technique based on a reaction-diffusion-equation. The distortion features are dependent on the amount of magnetic material in the active implants and showed a significant increase when measured with the 3D TFE compared to the 2D TSE. This work presents a quantitative approach for the evaluation of image distortion at 3.0T caused by active cardiac implants and serves as foundation for both further optimization of sequences and devices but also for planning of imaging procedures.
Collapse
Affiliation(s)
- Theresa Reiter
- Department of Internal Medicine I, Cardiology, University Hospital Wuerzburg, Oberduerbacher Strasse 6a, 97080, Wuerzburg, Germany.
- German Heart Center Munich, Electrophysiology, Munich, Germany.
| | | | | | - Wolfgang R Bauer
- Department of Internal Medicine I, Cardiology, University Hospital Wuerzburg, Oberduerbacher Strasse 6a, 97080, Wuerzburg, Germany
| |
Collapse
|
4
|
Koori N, Kamekawa H, Mukawa N, Fuse H, Miyakawa S, Yasue K, Takahashi M, Yamada M, Henmi A, Kusumoto T, Kurata K. Relationship between imaging parameters and distortion in magnetic resonance images for gamma knife treatment planning. J Appl Clin Med Phys 2023; 24:e14205. [PMID: 37975638 PMCID: PMC10691626 DOI: 10.1002/acm2.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
In magnetic resonance imaging (MRI), it is necessary to reduce image distortion as much as possible because it suppresses the increase in the planning target volume. This study investigated the relationship between imaging parameters and image distortion when using G-frames. The images were obtained using a 1.5-T MRI system with a 09-101 Pro-MRI phantom. Image distortion was measured by changing the RF pulse mode, gradient mode, asymmetric echo, and bandwidth (BW). The image distortion was increased in the high RF mode than in the Normal mode. The image distortion increased in the following order: Whisper ≦ Normal < Fast in the different gradient modes. The image distortion increased in the following order: Without ≦ Weak < Strong in the different asymmetric echo modes. The image distortion increased in the following order: 300 Hz/pixel > 670 Hz/pixel ≧ REF (150 Hz/pixel) in the different Bw. The relationship between parameters and image distortion was clarified in this study when G-frames were used for gamma knife therapy. There is had relationship between the parameters causing variation in the gradient magnetic field and image distortion. Therefore, these parameters should be adjusted to minimize distortion.
Collapse
Affiliation(s)
- Norikazu Koori
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
- Division of Health SciencesKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | | | - Nanami Mukawa
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Hiraku Fuse
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Shin Miyakawa
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Kenji Yasue
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Masato Takahashi
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | | | - Atsushi Henmi
- Department of RadiologyKomaki City HospitalKomakiAichiJapan
| | | | - Kazuma Kurata
- Department of RadiologyKomaki City HospitalKomakiAichiJapan
| |
Collapse
|
5
|
Marasini S, Zhang H, Dyke L, Cole M, Quinn B, Curcuru A, Gu B, Flores R, Kim T. Comprehensive MR imaging QA of 0.35 T MR-Linac using a multi-purpose large FOV phantom: A single-institution experience. J Appl Clin Med Phys 2023; 24:e14066. [PMID: 37307238 PMCID: PMC10562018 DOI: 10.1002/acm2.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
PURPOSE Magnetic resonance-guided radiotherapy (MRgRT) is desired for the treatment of diseases in the abdominothoracic region, which has a broad imaging area and continuous motion. To ensure accurate treatment delivery, an effective image quality assurance (QA) program, with a phantom that covers the field of view (FOV) similar to a human torso, is required. However, routine image QA for a large FOV is not readily available at many MRgRT centers. In this work, we present the clinical experience of the large FOV MRgRT Insight phantom for periodic daily and monthly comprehensive magnetic resonance imaging (MRI)-QA and its feasibility compared to the existing institutional routine MRI-QA procedures in 0.35 T MRgRT. METHODS Three phantoms; ViewRay cylindrical water phantom, Fluke 76-907 uniformity and linearity phantom, and Modus QA large FOV MRgRT Insight phantom, were imaged on the 0.35 T MR-Linac. The measurements were made in MRI mode with the true fast imaging with steady-state free precession (TRUFI) sequence. The ViewRay cylindrical water phantom was imaged in a single-position setup whereas the Fluke phantom and Insight phantom were imaged in three different orientations: axial, sagittal, and coronal. Additionally, the phased array coil QA was performed using the horizontal base plate of the Insight phantom by placing the desired coil around the base section which was compared to an in-house built Polyurethane foam phantom for reference. RESULT The Insight phantom captured image artifacts across the entire planar field of view, up to 400 mm, in a single image acquisition, which is beyond the FOV of the conventional phantoms. The geometric distortion test showed a similar distortion of 0.45 ± 0.01 and 0.41 ± 0.01 mm near the isocenter, that is, within 300 mm lengths for Fluke and Insight phantoms, respectively, but showed higher geometric distortion of 0.8 ± 0.4 mm in the peripheral region between 300 and 400 mm of the imaging slice for the Insight phantom. The Insight phantom with multiple image quality features and its accompanying software utilized the modulation transform function (MTF) to evaluate the image spatial resolution. The average MTF values were 0.35 ± 0.01, 0.35 ± 0.01, and 0.34 ± 0.03 for axial, coronal, and sagittal images, respectively. The plane alignment and spatial accuracy of the ViewRay water phantom were measured manually. The phased array coil test for both the Insight phantom and the Polyurethane foam phantoms ensured the proper functionality of each coil element. CONCLUSION The multifunctional large FOV Insight phantom helps in tracking MR imaging quality of the system to a larger extent compared to the routine daily and monthly QA phantoms currently used in our institute. Also, the Insight phantom is found to be more feasible for routine QA with easy setup.
Collapse
Affiliation(s)
- Shanti Marasini
- Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
| | - Hailei Zhang
- Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
| | - Lara Dyke
- Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
| | | | | | - Austen Curcuru
- Department of Biomedical EngineeringWashington University School of MedicineSt. LouisUSA
| | - Bruce Gu
- Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
| | | | - Taeho Kim
- Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
| |
Collapse
|
6
|
Lewis BC, Shin J, Maraghechi B, Quinn B, Cole M, Barberi E, Kim JS, Green O, Kim T. Assessment of a novel commercial large field of view phantom for comprehensive MR imaging quality assurance of a 0.35T MRgRT system. J Appl Clin Med Phys 2022; 23:e13535. [PMID: 35194946 PMCID: PMC8992932 DOI: 10.1002/acm2.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022] Open
Abstract
Consistent quality assurance (QA) programs are vital to MR‐guided radiotherapy (MRgRT), for ensuring treatment is delivered accurately and the onboard MRI system is providing the expected image quality. However, daily imaging QA with a dedicated phantom is not common at many MRgRT centers, especially with large phantoms that cover a field of view (FOV), similar to the human torso. This work presents the first clinical experience with a purpose‐built phantom for large FOV daily and periodic comprehensive quality assurance (QUASAR™ MRgRT Insight Phantom (beta)) from Modus Medical Devices Inc. (Modus QA) on an MRgRT system. A monthly American College of Radiology (ACR) QA phantom was also imaged for reference. Both phantoms were imaged on a 0.35T MR‐Linac, a 1.5T Philips wide bore MRI, and a 3.0T Siemens MRI, with T1‐weighted and T2‐weighted acquisitions. The Insight phantom was imaged in axial and sagittal orientations. Image quality tests including geometric accuracy, spatial resolution accuracy, slice thickness accuracy, slice position accuracy, and image intensity uniformity were performed on each phantom, following their respective instruction manuals. The geometric distortion test showed similar distortions of –1.7 mm and –1.9 mm across a 190 mm and a 283 mm lengths for the ACR and MRgRT Insight phantoms, respectively. The MRgRT Insight phantom utilized a modulation transform function (MTF) for spatial resolution evaluation, which showed decreased performance on the lower B0 strength MRIs, as expected, and could provide a good daily indicator of machine performance. Both the Insight and ACR phantoms showed a match with scan parameters for slice thickness analysis. During the imaging and analysis of this novel MRgRT Insight phantom the authors found setup to be straightforward allowing for easy acquisition each day, and useful image analysis parameters for tracking MRI performance.
Collapse
Affiliation(s)
- Benjamin C Lewis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jaeik Shin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Borna Maraghechi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Mike Cole
- Modus Medical Devices Inc., London, Ontario, Canada
| | - Enzo Barberi
- Modus Medical Devices Inc., London, Ontario, Canada
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Taeho Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Law MWL, Yuan J, Wong OL, Ying AD, Zhou Y, Cheung KY, Yu SK. Phantom assessment of three-dimensional geometric distortion of a dedicated wide-bore MR-simulator for radiotherapy. Biomed Phys Eng Express 2021; 8. [PMID: 34874313 DOI: 10.1088/2057-1976/ac3f4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/11/2022]
Abstract
This study evaluated the machine-dependent three-dimensional geometric distortion images acquired from a 1.5T 700mm-wide bore MR-simulator based on a large geometric accuracy phantom. With the consideration of radiation therapy (RT) application requirements, every sequence was examined in various combinations of acquisition-orientations and receiver-bandwidths with console-integrated distortion correction enabled. Distortion was repeatedly measured over a six-month period. The distortion measured from the images acquired at the beginning of this period was employed to retrospectively correct the distortion in the subsequent acquisitions. Geometric distortion was analyzed within the largest field-of-view allowed. Six sequences were examined for comprehensive distortion analysis - VIBE, SPACE, TSE, FLASH, BLADE and PETRA. Based on optimal acquisition parameters, their diameter-sphere-volumes (DSVs) of CT-comparable geometric fidelity (where 1mm distortion was allowed) were 333.6mm, 315.1mm, 316.0mm, 318.9mm, 306.2mm and 314.5mm respectively. This was a significant increase from 254.0mm, 245.5mm, 228.9mm, 256.6mm, 230.8mm and 254.2mm DSVs respectively, when images were acquired using un-optimized parameters. The longitudinal stability of geometric distortion and the efficacy of retrospective correction of console-corrected images, based on prior distortion measurements, were inspected using VIBE and SPACE. The retrospectively corrected images achieved over 500mm DSVs with 1mm distortion allowed. The median distortion was below 1mm after retrospective correction, proving that obtaining prior distortion map for subsequent retrospective distortion correction is beneficial. The systematic evaluation of distortion using various combinations of sequence-type, acquisition-orientation and receiver-bandwidth in a six-month time span would be a valuable guideline for optimizing sequence for various RT applications.
Collapse
Affiliation(s)
- Max W L Law
- Medical Physics Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Jing Yuan
- Research Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Oi Lei Wong
- Research Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, NA, 000, HONG KONG
| | - Abby D Ying
- Medical Physics Department, Hong Kong Sanatorium and Hospital, Hong Kong Sanatorium and Hospital, Hong Kong, HONG KONG
| | - Yihang Zhou
- Research Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| |
Collapse
|
8
|
Torfeh T, Hammoud R, Paloor S, Arunachalam Y, Aouadi S, Al-Hammadi N. Design and construction of a customizable phantom for the characterization of the three-dimensional magnetic resonance imaging geometric distortion. J Appl Clin Med Phys 2021; 22:149-157. [PMID: 34719100 PMCID: PMC8664142 DOI: 10.1002/acm2.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 11/11/2022] Open
Abstract
One of the main challenges to using magnetic resonance imaging (MRI) in radiotherapy is the existence of system‐related geometric inaccuracies caused mainly by the inhomogeneity in the main magnetic field and the nonlinearities of the gradient coils. Several physical phantoms, with fixed configuration, have been developed and commercialized for the assessment of the MRI geometric distortion. In this study, we propose a new design of a customizable phantom that can fit any type of radio frequency (RF) coil. It is composed of 3D printed plastic blocks containing holes that can hold glass tubes which can be filled with any liquid. The blocks can be assembled to construct phantoms with any dimension. The feasibility of this design has been demonstrated by assembling four phantoms with high robustness allowing the assessment of the geometric distortion for the GE split head coil, the head and neck array coil, the anterior array coil, and the body coil. Phantom reproducibility was evaluated by analyzing the geometric distortion on CT acquisition of five independent assemblages of the phantom. This solution meets all expectations in terms of having a robust, lightweight, modular, and practical tool for measuring distortion in three dimensions. Mean error in the position of the tubes was less than 0.2 mm. For the geometric distortion, our results showed that for all typical MRI sequences used for radiotherapy, the mean geometric distortion was less than 1 mm and less than 2.5 mm over radial distances of 150 mm and 250 mm, respectively. These tools will be part of a quality assurance program aimed at monitoring the image quality of MRI scanners used to guide radiation therapy.
Collapse
Affiliation(s)
- Tarraf Torfeh
- Department of Radiation Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Rabih Hammoud
- Department of Radiation Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Satheesh Paloor
- Department of Radiation Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Yoganathan Arunachalam
- Department of Radiation Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Souha Aouadi
- Department of Radiation Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Noora Al-Hammadi
- Department of Radiation Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
9
|
Machetanz K, Grimm F, Wang S, Bender B, Tatagiba M, Gharabaghi A, Naros G. Patient-to-robot registration: The fate of robot-assisted stereotaxy. Int J Med Robot 2021; 17:e2288. [PMID: 34036749 DOI: 10.1002/rcs.2288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Robot-assisted stereotaxy (RAS) promises higher stereotactic accuracy (SA) and time efficiency (TE) than frame-based stereotaxy. However, both aspects are attributed to the problem of patient-to-robot registration. OBJECTIVE To examine different registration techniques regarding their SA and TE. METHODS This study enrolled 57 patients undergoing RAS with bone fiducial registration (BFR) or laser surface registration (LSR). SA was measured by the entry point error (EPE). Additionally, predictors of SA (registration error [RegE], distance-to-registration plane [DTC]) and TE (imaging, skin-to-skin) were assessed. RESULTS The mean SA was 1.0 ± 0.8 mm. BFR increased SA by reducing RegE and DTC. In LSR, EPE depended on DTC (face and forehead) with highest accuracy for DTC ≤100 mm. CT-based LSR exerted a higher SA than MR-based LSR. In BFR, TE was confined by the additional imaging. CONCLUSION Every registration technique counteracts one of the promises of RAS. New solutions are needed to increase the acceptance of RAS in neurosurgery.
Collapse
Affiliation(s)
- Kathrin Machetanz
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Florian Grimm
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Sophie Wang
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Eberhard Karls University, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Georgios Naros
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
10
|
Slagowski JM, Redler G, Malin MJ, Cammin J, Lobb EC, Lee BH, Sethi A, Roeske JC, Flores-Martinez E, Stevens T, Yenice KM, Green O, Mutic S, Aydogan B. Dosimetric feasibility of brain stereotactic radiosurgery with a 0.35 T MRI-guided linac and comparison vs a C-arm-mounted linac. Med Phys 2020; 47:5455-5466. [PMID: 32996591 DOI: 10.1002/mp.14503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC. METHODS The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V12Gy ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol. RESULTS For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V12Gy ≤ 10.0 cm3 planning goal for targets with diameter ≤2.25 cm. The mean V12Gy was 3.1 cm3 for TB2 vs 5.5 cm3 , 5.0 cm3 and 4.3 cm3 , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V12Gy planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V12Gy was ≤6.0 cm3 for all clinical targets (maximum target volume = 3.51 cm3 ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%. CONCLUSIONS The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.
Collapse
Affiliation(s)
- Jordan M Slagowski
- Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Gage Redler
- Radiation Oncology, Moffitt Cancer Center, Tampa, FL, 33607, USA
| | - Martha J Malin
- Radiation Oncology, Langone Medical Center & Laura and Issac Perlmutter Cancer Center, New York University, New York, NY, 10016, USA
| | - Jochen Cammin
- Radiation Oncology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, 63110, USA
| | - Eric C Lobb
- Radiation Oncology, St. Elizabeth Hospital, Appleton, WI, 54915, USA
| | - Brian H Lee
- Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Anil Sethi
- Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - John C Roeske
- Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA
| | | | - Tynan Stevens
- Medical Physics, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Kamil M Yenice
- Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Olga Green
- Radiation Oncology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, 63110, USA
| | - Sasa Mutic
- Radiation Oncology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, 63110, USA
| | - Bulent Aydogan
- Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|