1
|
Sun X, Chang CF, Zhang J, Zeng Y, Li B, Sun Y, Kang H, Liu HC, Zhou Q. Four-Dimensional (4D) Ultrasound Shear Wave Elastography Using Sequential Excitation. IEEE Trans Biomed Eng 2025; 72:786-793. [PMID: 39356609 PMCID: PMC11875905 DOI: 10.1109/tbme.2024.3472689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Current shear wave elastography methods primarily focus on 2D imaging. To explore mechanical properties of biological tissues in 3D, a four-dimensional (4D, x, y, z, t) ultrasound shear wave elastography is required. However, 4D ultrasound shear wave elastography is still challenging due to the limitation of the hardware of standard ultrasound acquisition systems. In this study, we introduce a novel method to achieve 4D shear wave elastography, named sequential-based excitation shear wave elastography (SE-SWE). This method can achieve 4D elastography implemented by a 1024-element 2D array with a standard ultrasound 256-channel system. METHODS The SE-SWE method employs sequential excitation to generate shear waves, and utilizes a 2D array, dividing it into four sub-sections, to capture shear waves across multiple planes. This process involves sequentially exciting each sub-section to capture shear waves, followed by compounding the acquired data from these subsections. RESULTS The phantom studies showed strong concordance between the shear wave speeds (SWS) measured by SE-SWE and expected values, confirming the accuracy of this method and potential to differentiate tissues by stiffness. In ex vivo chicken breast experiments, SE-SWE effectively distinguished between orientations relative to muscle fibers, highlighting its ability to capture the anisotropic properties of tissues. CONCLUSION The SE-SWE method advances shear wave elastography significantly by using a 2D array divided into four subsections and sequential excitation, achieving high-resolution volumetric imaging at 1.6mm resolution. SIGNIFICANCE The SE-SWE method offers a straightforward and effective approach for 3D shear volume imaging of tissue biological properties.
Collapse
|
2
|
Klemmer Chandía S, Schattenfroh J, Brinker ST, Tzschätzsch H, Sack I, Meyer T. Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography. Sci Rep 2024; 14:28580. [PMID: 39562835 PMCID: PMC11576992 DOI: 10.1038/s41598-024-79991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
Collapse
Affiliation(s)
- Stefan Klemmer Chandía
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jakob Schattenfroh
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Spencer T Brinker
- Department of Neurology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Heiko Tzschätzsch
- Department of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Invalidenstraße 90, 10115, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Chavan R, Kamble N, Kuthe C, Sarnobat S. On Mechanical Behavior and Characterization of Soft Tissues. Biomed Eng Comput Biol 2024; 15:11795972241294115. [PMID: 39494420 PMCID: PMC11531667 DOI: 10.1177/11795972241294115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The growth and advancements done in solid mechanics and metallurgy have come up with various characterization techniques that help in prediction of elastic properties of different types of materials-isotropic, anisotropic, transverse isotropic, etc. Soft tissues which refer to fibrous tissues, fat, blood vessels, muscles and other tissues that support the body were found to have some control over its mechanical properties. This mechanical behavior of soft tissues has recently shifted the attention of many researchers to develop methods to characterize and describe the mechanical response of soft tissues. The paper discusses the biomechanical nature of soft tissues and the work done to characterize their elastic properties. The paper gives a review of the behavior and characteristics of soft tissues extracted from various experimental tests employed in their characterization. Soft tissues exhibit complex behavior and various complexities are involved in their experimental testing due to their small size and fragile nature. The paper focuses on the conventionally used tensile and compression tests and the difficulties encountered in soft tissue characterization. It also describes the utility of ultrasound technique which is a non-destructive method to characterize soft tissues. Tensile and compression test used to characterize materials are destructive in nature. Ultrasound technique can provide a better way to characterize material in a non-destructive manner.
Collapse
Affiliation(s)
- Radhika Chavan
- Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune, India
| | - Nitin Kamble
- Department of Robotics and Automation, D Y Patil College of Engineering, Akurdi, Pune, India
| | - Chetan Kuthe
- Department of Mechanical Engineering, Maharashtra Institute of Technology, Aurangabad, India
| | - Sandeep Sarnobat
- Department of Robotics and Automation, D Y Patil College of Engineering, Akurdi, Pune, India
| |
Collapse
|
4
|
Cai B, Li T, Bo L, Li J, Sullivan R, Sun C, Huberty W, Tian Z. Development of a piezo stack - laser Doppler vibrometer sensing approach for characterizing shear wave dispersion and local viscoelastic property distributions. MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2024; 214:111389. [PMID: 38737197 PMCID: PMC11086746 DOI: 10.1016/j.ymssp.2024.111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Laser Doppler vibrometry and wavefield analysis have recently shown great potential for nondestructive evaluation, structural health monitoring, and studying wave physics. However, there are limited studies on these approaches for viscoelastic soft materials, especially, very few studies on the laser Doppler vibrometer (LDV)-based acquisition of time-space wavefields of dispersive shear waves in viscoelastic materials and the analysis of these wavefields for characterizing shear wave dispersion and evaluating local viscoelastic property distributions. Therefore, this research focuses on developing a piezo stack-LDV system and shear wave time-space wavefield analysis methods for enabling the functions of characterizing the shear wave dispersion and the distributions of local viscoelastic material properties. Our system leverages a piezo stack to generate shear waves in viscoelastic materials and an LDV to acquire time-space wavefields. We introduced space-frequency-wavenumber analysis and least square regression-based dispersion comparison to analyze shear wave time-space wavefields and offer functions including extracting shear wave dispersion relations from wavefields and characterizing the spatial distributions of local wavenumbers and viscoelastic properties (e.g., shear elasticity and viscosity). Proof-of-concept experiments were performed using a synthetic gelatin phantom. The results show that our system can successfully generate shear waves and acquire time-space wavefields. They also prove that our wavefield analysis methods can reveal the shear wave dispersion relation and show the spatial distributions of local wavenumbers and viscoelastic properties. We expect this research to benefit engineering and biomedical research communities and inspire researchers interested in developing shear wave-based technologies for characterizing viscoelastic materials.
Collapse
Affiliation(s)
- Bowen Cai
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
- Advanced Composites Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Rani Sullivan
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chuangchuang Sun
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wayne Huberty
- Advanced Composites Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Dong Z, Lok UW, Lowerison MR, Huang C, Chen S, Song P. Three-Dimensional Shear Wave Elastography Using Acoustic Radiation Force and a 2-D Row-Column Addressing (RCA) Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:448-458. [PMID: 38363671 DOI: 10.1109/tuffc.2024.3366540] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Acoustic radiation force (ARF)-based shear wave elastography (SWE) is a clinically available ultrasound imaging mode that noninvasively and quantitatively measures tissue stiffness. Current implementations of ARF-SWE are largely limited to 2-D imaging, which does not provide a robust estimation of heterogeneous tissue mechanical properties. Existing 3-D ARF-SWE solutions that are clinically available are based on wobbler probes, which cannot provide true 3-D shear wave motion detection. Although 3-D ARF-SWE based on 2-D matrix arrays have been previously demonstrated, they do not provide a practical solution because of the need for a high channel-count ultrasound system (e.g., 1024-channel) to provide adequate volume rates and the delicate circuitries (e.g., multiplexers) that are vulnerable to the long-duration "push" pulses. To address these issues, here we propose a new 3-D ARF-SWE method based on the 2-D row-column addressing (RCA) array which has a much lower element count (e.g., 256), provides an ultrafast imaging volume rate (e.g., 2000 Hz), and can withstand the push pulses. In this study, we combined the comb-push shear elastography (CUSE) technique with 2-D RCA for enhanced SWE imaging field-of-view (FOV). In vitro phantom studies demonstrated that the proposed method had robust 3-D SWE performance in both homogenous and inclusion phantoms. An in vivo study on a breast cancer patient showed that the proposed method could reconstruct 3-D elasticity maps of the breast lesion, which was validated using a commercial ultrasound scanner. These results demonstrate strong potential for the proposed method to provide a viable and practical solution for clinical 3-D ARF-SWE.
Collapse
|
6
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Wang Y, Ono S, Johnson MP, Larson NB, Lynch T, Urban MW. Evaluating Variability of Commercial Liver Fibrosis Elastography Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1018-1030. [PMID: 36690519 DOI: 10.1016/j.ultrasmedbio.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Liver fibrosis has been found to increase the mechanical stiffness of the liver. To mimic different stages of liver fibrosis, commercially available phantoms (Model 039, CIRS, Inc.) have been produced for clinical quality assurance and research purposes. The purpose of this study was to investigate the mechanical property variability of the phantoms in two lots of CIRS Model 039 phantoms. METHODS Each lot consisted of phantoms of four stiffness types, and there were 8-10 phantoms of each type. Shear wave elastography measurements were conducted on each phantom at 10 different angles. Group velocity measurements and phase velocity curves were calculated for every SWE acquisition. Multilevel functional principal component analysis (MFPCA) was performed on phase velocity data, which decomposes each phase velocity curve into the sum of eigenfunctions of two levels. The variance of the component scores of levels 1 and 2 were used to represent inter-phantom and intra-phantom variability, respectively. The 95% confidence intervals of phase velocity in a phantom type were calculated to reflect curve variability. DISCUSSION The standard deviations of the group velocity for phantoms of any type were less than 0.04 and 0.02 m/s for lots 1 and 2, respectively. For both lots, in every type, the phase velocity curves of most individual phantoms fall within the 95% confidence interval. CONCLUSION MFPCA is an effective tool for analyzing the inter- and intra-phantom variability of phase velocity curves. Given the known variability of a fully tested lot, estimation of the variability of a new lot can be performed with a reduced number of phantoms tested.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | | - Matthew P Johnson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Wang X, Li Y, Jiang L, Zhou M, Zhang X, Wen H. Performance of 2D-shear wave elastography in autoimmune hepatitis-primary biliary cholangitis overlap syndrome. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:1290-1297. [PMID: 36792725 DOI: 10.1007/s00261-023-03840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE To evaluate the diagnostic values of liver stiffness (LS) measured by 2D-SWE, fibrosis index based on the four factors (FIB-4), aspartate aminotransferase to platelet ratio index (APRI), and GGT to PLT ratio (GPR) for assessing liver fibrosis and high-risk esophageal varices (EVs) in patients with autoimmune hepatitis-primary biliary cholangitis (AIH-PBC) overlap syndrome. METHODS Data of 141 patients were retrospectively collected. Liver fibrosis was staged according to the Scheuer scoring system. The Spearman correlation coefficient was used for correlation analysis. Receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic performance. RESULTS LS and FIB-4 were positively correlated with the fibrosis stage (r = 0.555 and 0.198, respectively). LS had significantly higher areas under the ROC curves (AUROCs) values than FIB-4 for predicting advanced fibrosis (0.818 vs. 0.567, P < 0.001), cirrhosis (0.879 vs. 0.637, P < 0.001), whereas LS and FIB-4 similarly predicted significant fibrosis (0.748 vs. 0.638, P = 0.071) and high-risk EVs (0.731 vs. 0.659, P = 0.303). The optimal cut-off values of 2D-SWE for detecting significant fibrosis, advanced fibrosis, cirrhosis, and high-risk EVs were 8.7 kPa, 12.8 kPa, 14.0 kPa, and 11.0 kPa, respectively. LS values were influenced by fibrosis stage, serum GGT, albumin, and total bilirubin levels. The overall concordance rate of the liver stiffness vs. Scheuer stages was 49.65%. CONCLUSIONS 2D-SWE shows significantly greater diagnostic accuracy than serum fibrosis indexes for diagnosing advanced fibrosis and cirrhosis in patients with AIH-PBC overlap syndrome.
Collapse
Affiliation(s)
- Xuexin Wang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingxia Li
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Libin Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaopeng Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongtao Wen
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Civale J, Parasaram V, Bamber JC, Harris EJ. High frequency ultrasound vibrational shear wave elastography for preclinical research. Phys Med Biol 2022; 67:245005. [PMID: 36410042 PMCID: PMC9728510 DOI: 10.1088/1361-6560/aca4b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Preclinical evaluation of novel therapies using models of cancer is an important tool in cancer research, where imaging can provide non-invasive tools to characterise the internal structure and function of tumours. The short propagation paths when imaging tumours and organs in small animals allow the use of high frequencies for both ultrasound and shear waves, providing the opportunity for high-resolution shear wave elastography and hence its use for studying the heterogeneity of tissue elasticity, where heterogeneity may be a predictor of tissue response. Here we demonstrate vibrational shear wave elastography (VSWE) using a mechanical actuator to produce high frequency (up to 1000 Hz) shear waves in preclinical tumours, an alternative to the majority of preclinical ultrasound SWE studies where an acoustic radiation force impulse is required to create a relatively low-frequency broad-band shear-wave pulse. We implement VSWE with a high frequency (17.8 MHz) probe running a focused line-by-line ultrasound imaging sequence which as expected was found to offer improved detection of 1000 Hz shear waves over an ultrafast planar wave imaging sequence in a homogenous tissue-mimicking phantom. We test the VSWE in anex vivotumour xenograft, demonstrating the ability to detect shear waves up to 10 mm from the contactor position at 1000 Hz. By reducing the kernel size used for shear wave speed estimation to 1 mm we are able to produce shear wave speed images with spatial resolution of this order. Finally, we present VSWE data from xenograft tumoursin vivo, demonstrating the feasibility of the technique in mice under isoflurane sedation. Mean shear wave speeds in the tumours are in good agreements with those reported by previous authors. Characterising the frequency dependence of shear wave speed demonstrates the potential to quantify the viscoelastic properties of tumoursin vivo.
Collapse
Affiliation(s)
- J Civale
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - V Parasaram
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - JC Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - EJ Harris
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
10
|
Parasaram V, Civale J, Bamber JC, Robinson SP, Jamin Y, Harris E. Preclinical Three-Dimensional Vibrational Shear Wave Elastography for Mapping of Tumour Biomechanical Properties In Vivo. Cancers (Basel) 2022; 14:4832. [PMID: 36230755 PMCID: PMC9564290 DOI: 10.3390/cancers14194832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Harris
- Division of Radiotherapy and Imaging, Centre for Cancer Imaging, Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
11
|
Dong Z, Kim J, Huang C, Lowerison MR, Lok UW, Chen S, Song P. Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array. BME FRONTIERS 2022; 2022:9879632. [PMID: 37850186 PMCID: PMC10521701 DOI: 10.34133/2022/9879632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/18/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.
Collapse
Affiliation(s)
- Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jihun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of ICT Convergence Engineering/Major in Electronic Engineering, Kangnam University, Republic of Korea
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew R. Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Dayavansha EGS, Gross GJ, Ehrman MC, Grimm PD, Mast TD. Reconstruction of shear wave speed in tissue-mimicking phantoms from aliased pulse-echo imaging of high-frequency wavefields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4128. [PMID: 34972294 DOI: 10.1121/10.0008901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Quantitative elasticity estimation in medical and industrial applications may benefit from advancements in reconstruction of shear wave speed with enhanced resolution. Here, shear wave speed is reconstructed from pulse-echo ultrasound imaging of elastic waves induced by high-frequency (>400 Hz), time-harmonic mechanical excitation. Particle displacement in shear wavefields is mapped from measured interframe phase differences with compensation for timing of multiple scan lines, then processed by spatial Fourier analysis to estimate the predominant wave speed and analyzed by algebraic wavefield inversion to reconstruct wave speed maps. Reconstructions of shear wave speed from simulated wavefields illustrate the accuracy and spatial resolution available with both methods, as functions of signal-to-noise ratio and sizes of windows used for Fourier analysis or wavefield smoothing. The methods are applied to shear wavefields with frequencies up to six times the Nyquist rate, thus extending the frequency range measurable by a given imaging system. Wave speed measurements in tissue-mimicking phantoms are compared with supersonic shear imaging and mechanical tensile testing, demonstrating feasibility of the wavefield measurement and wave speed reconstruction methods employed.
Collapse
Affiliation(s)
| | - Gary J Gross
- The Procter & Gamble Company, Mason, Ohio 45040, USA
| | | | - Peter D Grimm
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|