1
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
2
|
Chen D, Motlagh SAO, Stappen FV, Labarbe R, Bell B, Kim M, Teo BKK, Dong L, Zou W, Diffenderfer ES. Secondary neutron dosimetry for conformal FLASH proton therapy. Med Phys 2024; 51:5081-5093. [PMID: 38597815 DOI: 10.1002/mp.17050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Cyclotron-based proton therapy systems utilize the highest proton energies to achieve an ultra-high dose rate (UHDR) for FLASH radiotherapy. The deep-penetrating range associated with this high energy can be modulated by inserting a uniform plate of proton-stopping material, known as a range shifter, in the beam path at the nozzle to bring the Bragg peak within the target while ensuring high proton transport efficiency for UHDR. Aluminum has been recently proposed as a range shifter material mainly due to its high compactness and its mechanical properties. A possible drawback lies in the fact that aluminum has a larger cross-section of producing secondary neutrons compared to conventional plastic range shifters. Accordingly, an increase in secondary neutron contamination was expected during the delivery of range-modulated FLASH proton therapy, potentially heightening neutron-induced carcinogenic risks to the patient. PURPOSE We conducted neutron dosimetry using simulations and measurements to evaluate excess dose due to neutron exposure during UHDR proton irradiation with aluminum range shifters compared to plastic range shifters. METHODS Monte Carlo simulations in TOPAS were performed to investigate the secondary neutron production characteristics with aluminum range shifter during 225 MeV single-spot proton irradiation. The computational results were validated against measurements with a pair of ionization chambers in an out-of-field region ( ≤ $\le$ 30 cm) and with a Proton Recoil Scintillator-Los Alamos rem meter in a far-out-of-field region (0.5-2.5 m). The assessments were repeated with solid water slabs as a surrogate for the conventional range shifter material to evaluate the impact of aluminum on neutron yield. The results were compared with the International Electrotechnical Commission (IEC) standards to evaluate the clinical acceptance of the secondary neutron yield. RESULTS For a range modulation up to 26 cm in water, the maximum simulated and measured values of out-of-field secondary neutron dose equivalent per therapeutic dose with aluminum range shifter were found to be( 0.57 ± 0.02 ) mSv/Gy $(0.57\pm 0.02)\ \text{mSv/Gy}$ and( 0.46 ± 0.04 ) mSv/Gy $(0.46\pm 0.04)\ \text{mSv/Gy}$ , respectively, overall higher than the solid water cases (simulation:( 0.332 ± 0.003 ) mSv/Gy $(0.332\pm 0.003)\ \text{mSv/Gy}$ ; measurement:( 0.33 ± 0.03 ) mSv/Gy $(0.33\pm 0.03)\ \text{mSv/Gy}$ ). The maximum far out-of-field secondary neutron dose equivalent was found to be (8.8 ± 0.5 $8.8 \pm 0.5$ ) μ Sv / Gy $\umu {\rm Sv/Gy}$ and (1.62 ± 0.02 $1.62 \pm 0.02$ ) μ Sv / Gy $\umu {\rm Sv/Gy}$ for the simulations and rem meter measurements, respectively, also higher than the solid water counterparts (simulation: (3.3 ± 0.3 $3.3 \pm 0.3$ ) μ Sv / Gy $\umu {\rm Sv/Gy}$ ; measurement: (0.63 ± 0.03 $0.63 \pm 0.03$ ) μ Sv / Gy $\umu {\rm Sv/Gy}$ ). CONCLUSIONS We conducted simulations and measurements of secondary neutron production under proton irradiation at FLASH energy with range shifters. We found that the secondary neutron yield increased when using aluminum range shifters compared to conventional materials while remaining well below the non-primary radiation limit constrained by the IEC regulations.
Collapse
Affiliation(s)
- Dixin Chen
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Rudi Labarbe
- Ion Beam Applications S.A. (IBA), Louvain-la-Neuve, Belgium
| | - Beryl Bell
- Ion Beam Applications S.A. (IBA), Louvain-la-Neuve, Belgium
| | - Michele Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
3
|
Kneepkens E, Wolfs C, Wanders RG, Traneus E, Eekers D, Verhaegen F. Shoot-through proton FLASH irradiation lowers linear energy transfer in organs at risk for neurological tumors and is robust against density variations. Phys Med Biol 2023; 68:215020. [PMID: 37820687 DOI: 10.1088/1361-6560/ad0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Objective. The goal of the study was to test the hypothesis that shoot-through FLASH proton beams would lead to lower dose-averaged LET (LETD) values in critical organs, while providing at least equal normal tissue sparing as clinical proton therapy plans.Approach. For five neurological tumor patients, pencil beam scanning (PBS) shoot-through plans were made, using the maximum energy of 227 MeV and assuming a hypothetical FLASH protective factor (FPF) of 1.5. The effect of different FPF ranging from 1.2 to 1.8 on the clinical goals were also considered. LETDwas calculated for the clinical plan and the shoot-through plan, applying a 2 Gy total dose threshold (RayStation 8 A/9B and 9A-IonRPG). Robust evaluation was performed considering density uncertainty (±3% throughout entire volume).Main results.Clinical plans showed large LETDvariations compared to shoot-through plans and the maximum LETDin OAR is 1.2-8 times lower for the latter. Although less conformal, shoot-through plans met the same clinical goals as the clinical plans, for FLASH protection factors above 1.4. The FLASH shoot-through plans were more robust to density uncertainties with a maximum OAR D2%increase of 0.6 Gy versus 5.7 Gy in the clinical plans.Significance.Shoot-through proton FLASH beams avoid uncertainties in LETDdistributions and proton range, provide adequate target coverage, meet planning constraints and are robust to density variations.
Collapse
Affiliation(s)
- Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cecile Wolfs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roel-Germ Wanders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erik Traneus
- RaySearch Laboratories AB, SE-103 65, Stockholm, Sweden
| | - Danielle Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
4
|
Liu G, Zhao L, Li X, Zhang S, Dai S, Lu X, Ding X. A Novel Ultrahigh-Dose-Rate Proton Therapy Technology: Spot-Scanning Proton Arc Therapy + FLASH (SPLASH). Int J Radiat Oncol Biol Phys 2023; 117:730-737. [PMID: 37196836 DOI: 10.1016/j.ijrobp.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE To take full advantage of FLASH dose rate (40 Gy/s) and high-dose conformity, we introduce a novel optimization and delivery technique, the spot-scanning proton arc therapy (SPArc) + FLASH (SPLASH). METHODS AND MATERIALS SPLASH framework was implemented in an open-source proton planning platform (MatRad, Department of Medical Physics in Radiation Oncology, German Cancer Research Center). It optimizes with the clinical dose-volume constraint based on dose distribution and the dose-average dose rate by minimizing the monitor unit constraint on spot weight and accelerator beam current sequentially, enabling the first dynamic arc therapy with voxel-based FLASH dose rate. This new optimization framework minimizes the overall cost function value combined with plan quality and voxel-based dose-rate constraints. Three representative cases (brain, liver, and prostate cancer) were used for testing purposes. Dose-volume histogram, dose-rate-volume histogram, and dose-rate map were compared among intensity modulated proton radiation therapy (IMPT), SPArc, and SPLASH. RESULTS SPLASH/SPArc could offer superior plan quality over IMPT in terms of dose conformity. The dose-rate-volume histogram results indicated SPLASH could significantly improve V40 Gy/s in the target and region of interest for all tested cases compared with SPArc and IMPT. The optimal beam current per spot is simultaneously generated, which is within the existing proton machine specifications in the research version (<200 nA). CONCLUSIONS SPLASH offers the first voxel-based ultradose-rate and high-dose conformity treatment using proton beam therapy. Such a technique has the potential to fit the needs of a broad range of disease sites and simplify clinical workflow without applying a patient-specific ridge filter, which has never before been demonstrated.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023 China.
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023 China.
| | - Shuyang Dai
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072 China
| | - Xiliang Lu
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072 China
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan.
| |
Collapse
|
5
|
Böhlen TT, Germond JF, Traneus E, Vallet V, Desorgher L, Ozsahin EM, Bochud F, Bourhis J, Moeckli R. 3D-conformal very-high energy electron therapy as candidate modality for FLASH-RT: A treatment planning study for glioblastoma and lung cancer. Med Phys 2023; 50:5745-5756. [PMID: 37427669 DOI: 10.1002/mp.16586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/27/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Pre-clinical ultra-high dose rate (UHDR) electron irradiations on time scales of 100 ms have demonstrated a remarkable sparing of brain and lung tissues while retaining tumor efficacy when compared to conventional dose rate irradiations. While clinically-used gantries and intensity modulation techniques are too slow to match such time scales, novel very-high energy electron (VHEE, 50-250 MeV) radiotherapy (RT) devices using 3D-conformed broad VHEE beams are designed to deliver UHDR treatments that fulfill these timing requirements. PURPOSE To assess the dosimetric plan quality obtained using VHEE-based 3D-conformal RT (3D-CRT) for treatments of glioblastoma and lung cancer patients and compare the resulting treatment plans to those delivered by standard-of-care intensity modulated photon RT (IMRT) techniques. METHODS Seven glioblastoma patients and seven lung cancer patients were planned with VHEE-based 3D-CRT using 3 to 16 coplanar beams with equidistant angular spacing and energies of 100 and 200 MeV using a forward planning approach. Dose distributions, dose-volume histograms, coverage (V95% ) and homogeneity (HI98% ) for the planning target volume (PTV), as well as near-maximum doses (D2% ) and mean doses (Dmean ) for organs-at-risk (OAR) were evaluated and compared to clinical IMRT plans. RESULTS Mean differences of V95% and HI98% of all VHEE plans were within 2% or better of the IMRT reference plans. Glioblastoma plan dose metrics obtained with VHEE configurations of 200 MeV and 3-16 beams were either not significantly different or were significantly improved compared to the clinical IMRT reference plans. All OAR plan dose metrics evaluated for VHEE plans created using 5 beams of 100 MeV were either not significantly different or within 3% on average, except for Dmean for the body, Dmean for the brain, D2% for the brain stem, and D2% for the chiasm, which were significantly increased by 1, 2, 6, and 8 Gy, respectively (however below clinical constraints). Similarly, the dose metrics for lung cancer patients were also either not significantly different or were significantly improved compared to the reference plans for VHEE configurations with 200 MeV and 5 to 16 beams with the exception of D2% and Dmean to the spinal canal (however below clinical constraints). For the lung cancer cases, the VHEE configurations using 100 MeV or only 3 beams resulted in significantly worse dose metrics for some OAR. Differences in dose metrics were, however, strongly patient-specific and similar for some patient cases. CONCLUSIONS VHEE-based 3D-CRT may deliver conformal treatments to simple, mostly convex target shapes in the brain and the thorax with a limited number of critical adjacent OAR using a limited number of beams (as low as 3 to 7). Using such treatment techniques, a dosimetric plan quality comparable to that of standard-of-care IMRT can be achieved. Hence, from a treatment planning perspective, 3D-conformal UHDR VHEE treatments delivered on time scales of 100 ms represent a promising candidate technique for the clinical transfer of the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | - Veronique Vallet
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
6
|
Zhang G, Zhang Z, Gao W, Quan H. Treatment planning consideration for very high-energy electron FLASH radiotherapy. Phys Med 2023; 107:102539. [PMID: 36804694 DOI: 10.1016/j.ejmp.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Very high-energy electron (VHEE) can make up the insufficient treatment depth of the low-energy electron while offering an intermediate dosimetric advantage between photon and proton. Combining FLASH with VHEE, a quantitative comparison between different energies was made, with regard to plan quality, dose rate distribution (both in PTV and OAR), and total duration of treatment (beam-on time). METHODS In two patient cases (head and lung), we created the treatment plans utilizing the scanning pencil beam via the Monte Carlo simulation and a PTV-based optimization algorithm. Geant4 was used to simulate VHEE pencil beams and sizes of 0.3-5 mm defined by the full width at half maximum (FWHM). Monoenergetic beams with Gaussian distribution in x and y directions (ISOURC = 19) were used as the source of electrons. A large-scale non-linear solver (IPOPT) was used to calculate the optimal spot weights. After optimization, a quantitative comparison between different energies was made regarding treatment plan quality, dose rate distribution (both in PTV and OAR), and total beam duration. RESULTS For head (80 MeV, 100 MeV, and 120 MeV) and lung cases (100 MeV, 120 MeV, and 140 MeV), the minimum beam intensity needs to be ∼2.5 × 1011 electrons/s and ∼9.375 × 1011 electrons/s to allow > 90 % volume of PTV reaching the average dose rate (DADR) higher than 40 Gy/s. At this beam intensity (fraction dose: 10 Gy), the overall irradiation time for the head case is 5258.75 ms (80 MeV), 5149.75 ms (100 MeV), and 4976.75 ms (120 MeV), including scanning time 872.75 ms. For lung cases, this number is 1034.25 ms (100 MeV), 981.55 ms (120 MeV), and 928.15 ms (140 MeV), including scanning time 298.75 ms. The plan of higher energy always performs with a higher dose rate (both in PTV and OAR) and thereby costs less delivery time (beam-on time). CONCLUSION The study systematically investigated the currently known FLASH parameters for VHEE radiotherapy and successfully established a benchmark reference for its FLASH dose rate performance.
Collapse
Affiliation(s)
- Guoliang Zhang
- School of Physics and Technology, Wuhan University, 430072, China
| | - Zhengzhao Zhang
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, China
| | - Wenchao Gao
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, China
| | - Hong Quan
- School of Physics and Technology, Wuhan University, 430072, China.
| |
Collapse
|
7
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
8
|
Rothwell B, Lowe M, Traneus E, Krieger M, Schuemann J. Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncol 2022; 175:222-230. [PMID: 35963397 DOI: 10.1016/j.radonc.2022.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.
Collapse
Affiliation(s)
- Bethany Rothwell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, Germany
| | - Jan Schuemann
- Division of Physics, Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Zhang G, Gao W, Peng H. Design of static and dynamic ridge filters for FLASH-IMPT: a simulation study. Med Phys 2022; 49:5387-5399. [PMID: 35595708 DOI: 10.1002/mp.15717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This paper focused on the design and optimization of ridge filter-based intensity-modulated proton therapy (IMPT), and its potential applications for FLASH. Differing from the standard pencil beam scanning (PBS) mode, no energy/layer switching is required and total treatment time can be shortened. METHODS Unique dose influence matrices were generated as a proton beam traverse through slabs of different thicknesses (i.e. modulation by different layers). To establish the references for comparison, conventional IMPT plans (single field) were created using a large-scale non-linear solver. The spot weights from the reference IMPT plans were used as inputs for optimizing the design of ridge filters. Two designs were evaluated: model A (static) and model B (dynamic). The ridge filters designs were first verified (by GEANT4 simulation) in a water phantom and then in a H&N case. Direct comparison was made between the GEANT4 simulation results of two models and their respective references, with regard to plan quality, dose-averaged dose rate (DADR), and total treatment time. RESULTS In both the water phantom and the H&N case, two models are able to modulate dose distributions with high conformity, showing no significant difference relative to the reference plans. Dose rate volume histograms (DRVHs) suggest that in order to achieve a dose rate of 40 Gy/s over 90% PTV, the beam intensity needs to be 2.5×1011 protons/s for both models. For a fraction dose of 10 Gy, the total treatment time (including both irradiation time and dead time) can be shortened by a factor of 4.9 (model A) and 6.5 (model B), relative to the reference plans. CONCLUSION Two proposed designs (both static and dynamic) can be used for PBS-IMPT requiring no layer switching. They are promising candidates for FLASH-IMPT capable of reducing treatment time and achieving high dose rates, while maintaining dose conformity simultaneously. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Medical Physics, School of Physics and Technology, Wuhan University
| | - Wenchao Gao
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital
| | - Hao Peng
- Department of Medical Physics, School of Physics and Technology, Wuhan University.,ProtonSmart Inc
| |
Collapse
|
10
|
Farr J, Grilj V, Malka V, Sudharsan S, Schippers M. Ultra‐High dose rate radiation production and delivery systems intended for FLASH. Med Phys 2022; 49:4875-4911. [PMID: 35403262 PMCID: PMC9544515 DOI: 10.1002/mp.15659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Higher dose rates, a trend for radiotherapy machines, can be beneficial in shortening treatment times for radiosurgery and mitigating the effects of motion. Recently, even higher doses (e.g., 100 times greater) have become targeted because of their potential to generate the FLASH effect (FE). We refer to these physical dose rates as ultra‐high (UHDR). The complete relationship between UHDR and the FE is unknown. But UHDR systems are needed to explore the relationship further and to deliver clinical UHDR treatments, where indicated. Despite the challenging set of unknowns, the authors seek to make reasonable assumptions to probe how existing and developing technology can address the UHDR conditions needed to provide beam generation capable of producing the FE in preclinical and clinical applications. As a preface, this paper discusses the known and unknown relationships between UHDR and the FE. Based on these, different accelerator and ionizing radiation types are then discussed regarding the relevant UHDR needs. The details of UHDR beam production are discussed for existing and potential future systems such as linacs, cyclotrons, synchrotrons, synchrocyclotrons, and laser accelerators. In addition, various UHDR delivery mechanisms are discussed, along with required developments in beam diagnostics and dose control systems.
Collapse
Affiliation(s)
- Jonathan Farr
- Applications of Detectors and Accelerators to Medicine Meyrin 1217 Switzerland
| | - Veljko Grilj
- Lausanne University Hospital Lausanne 1011 Switzerland
| | - Victor Malka
- Weizmann Institute of Science Rehovot 7610001 Israel
| | | | | |
Collapse
|
11
|
Durante M. Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiat Res 2021; 195:403-411. [PMID: 33979440 DOI: 10.1667/rade-21-00029.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, Institute of Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|