1
|
Chang CW, Tian Z, Qiu RLJ, Scott Mcginnis H, Bohannon D, Patel P, Wang Y, Yu DS, Patel SA, Zhou J, Yang X. Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins. Phys Med Biol 2025; 70:025010. [PMID: 39761649 PMCID: PMC11740008 DOI: 10.1088/1361-6560/ada684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Objective.This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept to improve treatment quality.Approach. A retrospective study on two-fraction prostate proton SBRT was conducted, involving a cohort of 10 randomly selected patient cases from an institutional database (n= 43). DT-based treatment plans were developed using patient-specific CTV setup uncertainty, determined through machine learning predictions. Plans were optimized using pre-treatment CT and corrected cone-beam CT (cCBCT). The cCBCT was corrected for CT numbers and artifacts, and plan evaluation was performed using cCBCT to account for actual patient anatomy. The ProKnow scoring system was adapted to determine the optimal treatment plans.Main Results.Average CTV D98 values for original clinical and DT-based plans across 10 patients were 99.0% and 98.8%, with hot spots measuring 106.0% and 105.1%. Regarding bladder, clinical plans yielded average bladder neck V100 values of 29.6% and bladder V20.8 Gy values of 12.0cc, whereas DT-based plans showed better sparing of bladder neck with values of 14.0% and 9.5cc. Clinical and DT-based plans resulted in comparable rectum dose statistics due to SpaceOAR. Compared to clinical plans, the proposed DT-based plans improved dosimetry quality, improving plan scores ranging from 2.0 to 15.5.Significance.Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions using fast adaptive treatment plan selections and patient-specific setup uncertainty. This research contributes to the ongoing efforts to achieve personalized prostate radiotherapy.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Zhen Tian
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - H Scott Mcginnis
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Duncan Bohannon
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Sagar A Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| |
Collapse
|
2
|
Oud M, Breedveld S, Giżyńska M, Chen YH, Habraken S, Perkó Z, Heijmen B, Hoogeman M. Dosimetric advantages of adaptive IMPT vs. Enhanced workload and treatment time - A need for automation. Radiother Oncol 2024; 201:110548. [PMID: 39343389 DOI: 10.1016/j.radonc.2024.110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In head-and-neck IMPT, trigger-based offline plan adaptation (Offlinetrigger-based) is often used. Our goal was to compare this to four alternative adaptive strategies for dosimetry, workload and treatment time, considering also foreseen further technological advancements, including anticipated automation. MATERIALS AND METHODS Alternative strategies included weekly offline re-planning (Offlineweekly), daily plan selection from a library (Librarystatic and Libraryprogsressive) and a fast, approximate daily online re-optimization approach (Onlinere-opt). Impact on CTV coverage and NTCPs was assessed by simulations based on repeat-CTs from 15 patients. Full daily re-planning was used as dosimetric benchmark. Increases in workload and treatment time were estimated. RESULTS Both for coverage and NTCPs, fast Onlinere-opt performed as well as full re-planning. Compared to current practice, Onlinere-opt showed enhanced probabilities for high coverage, and resulted in reductions in grade ≥ II NTCPs of 4.6 ± 1.7 %-point for xerostomia and 4.2 ± 2.3 %-point for dysphagia. Offlineweekly and library strategies did not show coverage enhancements and resulted in smaller NTCP improvements. Further automation can largely limit workload and treatment time increases. With anticipated further automation, adaptation-related workload of Offlineweekly, Librarystatic, Libraryprogressive, and Onlinere-opt was expected to increase by 3, 8, 21, and 66 h for 35 fraction treatment courses compared to Offlinetrigger-based. The corresponding adaptation-related prolonged treatment times were estimated to be 0, 4, 6, and 29 min/fraction. CONCLUSION Online adaptive strategies could approach dosimetric quality of full re-planning at the cost of additional workload and prolonged treatment time compared to the current offline adaptive strategy. Automation needs to play a key role in making more complex adaptive approaches feasible.
Collapse
Affiliation(s)
- Michelle Oud
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, Netherlands; HollandPTC, Delft, Netherlands.
| | - Sebastiaan Breedveld
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, Netherlands
| | | | - Yi Hsuan Chen
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Netherlands
| | - Steven Habraken
- HollandPTC, Delft, Netherlands; Leiden University Medical Center, Department of Radiation Oncology, Leiden, Netherlands
| | - Zoltán Perkó
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Netherlands
| | - Ben Heijmen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, Netherlands
| | - Mischa Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, Netherlands; HollandPTC, Delft, Netherlands
| |
Collapse
|
3
|
Thomsen SN, Møller DS, Knap MM, Khalil AA, Shcytte T, Hoffmann L. Daily CBCT-based dose calculations for enhancing the safety of dose-escalation in lung cancer radiotherapy. Radiother Oncol 2024; 200:110506. [PMID: 39197502 DOI: 10.1016/j.radonc.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE Dose-escalation in lung cancer comes with a high risk of severe toxicity. This study aimed to calculate the delivered dose in a Scandinavian phase-III dose-escalation trial. METHODS The delivered dose was evaluated for 21 locally-advanced non-small cell lung cancer (LA-NSCLC) patients treated as part of the NARLAL2 dose-escalation trial. The patients were randomized between standard and escalated heterogeneous dose-delivery. Both treatment plans were created and approved before randomization. Daily cone-beam CT (CBCT) for patient positioning, and adaptive radiotherapy were mandatory. Standard and escalated plans, including adaptive re-plans, were recalculated on each daily CBCT and accumulated on the planning CT for each patient. Dose to the clinical target volume (CTV), organs at risk (OAR), and the effects of plan adaptions were evaluated for the accumulated dose and on each treated fraction scaled to full treatment. RESULTS For the standard treatment, plan adaptations reduced the number of patients with CTV-T underdosage from six to one, and the total number of fractions with CTV-T underdosage from 161 to 56; while for the escalated treatment, the number of patients was reduced from five to zero and number of fractions from 81 to 11. For dose-escalation, three patients had fractions exceeding trial constraints for heart, bronchi, or esophagus, and one had an accumulated heart dose above the constraints. CONCLUSION Dose-escalation for LA-NSCLC patients, using daily image guidance and adaptive radiotherapy, is dosimetrically safe for the majority of patients. Dose calculation on daily CBCTs is an efficient tool to monitor target coverage and OAR doses.
Collapse
Affiliation(s)
- S N Thomsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - D S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - A A Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - T Shcytte
- Department of Oncology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - L Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Chetty IJ, Cai B, Chuong MD, Dawes SL, Hall WA, Helms AR, Kirby S, Laugeman E, Mierzwa M, Pursley J, Ray X, Subashi E, Henke LE. Quality and Safety Considerations for Adaptive Radiation Therapy: An ASTRO White Paper. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03474-6. [PMID: 39424080 DOI: 10.1016/j.ijrobp.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Adaptive radiation therapy (ART) is the latest topic in a series of white papers published by the American Society for Radiation Oncology addressing quality processes and patient safety. ART widens the therapeutic index by improving the precision of radiation dose to targets, allowing for dose escalation and/or minimization of dose to normal tissue. ART is performed via offline or online methods; offline ART is the process of replanning a patient's treatment plan between fractions, whereas online ART involves plan adjustment with the patient on the treatment table. This is achieved with in-room imaging capable of assessing anatomic changes and the ability to reoptimize the treatment plan rapidly during the treatment session. Although ART has occurred in its simplest forms in clinical practice for decades, recent technological developments have enabled more clinical applications of ART. With increased clinical prevalence, compressed timelines, and the associated complexity of ART, quality and safety considerations are an important focus area. METHODS The American Society for Radiation Oncology convened an interdisciplinary task force to provide expert consensus on key workflows and processes for ART. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale, from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters selecting "strongly agree" or "agree" indicated consensus. Content not meeting this threshold was removed or revised. SUMMARY Establishing and maintaining an adaptive program requires a team-based approach, appropriately trained and credentialed specialists, significant resources, specialized technology, and implementation time. A comprehensive quality assurance program must be developed, using established guidance, to make sure all forms of ART are performed in a safe and effective manner. Patient safety when delivering ART is everyone's responsibility, and professional organizations, regulators, vendors, and end users must demonstrate a clear commitment to working together to deliver the highest levels of quality and safety.
Collapse
Affiliation(s)
- Indrin J Chetty
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bin Cai
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R Helms
- American Society for Radiation Oncology, Arlington, Virginia
| | - Suzanne Kirby
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University in St Louis, St Louis, Missouri
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Xenia Ray
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, California
| | - Ergys Subashi
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Henke
- Department of Radiation Oncology, Case Western University Hospitals, Cleveland, Ohio
| |
Collapse
|
5
|
Dueholm Vestergaard C, Vindelev Elstrøm U, Paul Muren L, Ren J, Nørrevang O, Jensen K, Trier Taasti V. Proton dose calculation on cone-beam computed tomography using unsupervised 3D deep learning networks. Phys Imaging Radiat Oncol 2024; 32:100658. [PMID: 39534276 PMCID: PMC11554915 DOI: 10.1016/j.phro.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background and Purpose Poor image quality of cone-beam computed tomography (CBCT) images can hinder proton dose calculation to assess the influence of anatomy changes. The aim of this study was to evaluate image quality and proton dose calculation accuracy of synthetic CTs generated from CBCT using unsupervised 3D deep-learning networks. Materials and methods A total of 102 head-and-neck cancer patients were used to train (N=82) and test (N=20) i) a cycle-consistent generative adversarial network, ii) a contrastive unpaired translation, and iii) a fusion of the two (CycleCUT). For patients in the test set, a repeat CT was deformably registered to a same-day CBCT to create a ground-truth CT for comparison. The proton plan was re-calculated on the ground-truth CT and synthetic CTs. The image quality of the synthetic CTs was evaluated using peak signal-to-noise ratio, structural similarity index measure, mean error, and mean absolute error (MAE). Proton dose calculation accuracy was assessed through 3D gamma analysis and dose-volume-histogram parameters. Results All synthetic CTs accurately preserved the CBCT anatomy (verified by visual inspection) while improving the image quality. The CycleCUT network had slightly improved image quality compared to the other networks (MAE in body: 53 Hounsfield units (HU) vs. 54/55 HU). All networks had similar proton dose calculation accuracy with gamma passing rate above 97%. Conclusions All three evaluated networks generated synthetic CT images with dose distributions comparable to those of conventional fan-beam CT. The synthetic CT generation was fast, making all networks feasible for adaptive proton therapy.
Collapse
Affiliation(s)
| | | | - Ludvig Paul Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jintao Ren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Nørrevang
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Kenneth Jensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Vicki Trier Taasti
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
6
|
Galeone C, Steinsberger T, Donetti M, Martire MC, Milian FM, Sacchi R, Vignati A, Volz L, Durante M, Giordanengo S, Graeff C. Real-time delivered dose assessment in carbon ion therapy of moving targets. Phys Med Biol 2024; 69:205001. [PMID: 39299266 DOI: 10.1088/1361-6560/ad7d59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective. Real-time adaptive particle therapy is being investigated as a means to maximize the treatment delivery accuracy. To react to dosimetric errors, a system for fast and reliable verification of the agreement between planned and delivered doses is essential. This study presents a clinically feasible, real-time 4D-dose reconstruction system, synchronized with the treatment delivery and motion of the patient, which can provide the necessary feedback on the quality of the delivery.Approach. A GPU-based analytical dose engine capable of millisecond dose calculation for carbon ion therapy has been developed and interfaced with the next generation of the dose delivery system (DDS) in use at Centro Nazionale di Adroterapia Oncologica (CNAO). The system receives the spot parameters and the motion information of the patient during the treatment and performs the reconstruction of the planned and delivered 4D-doses. After each iso-energy layer, the results are displayed on a graphical user interface by the end of the spill pause of the synchrotron, permitting verification against the reference dose. The framework has been verified experimentally at CNAO for a lung cancer case based on a virtual phantom 4DCT. The patient's motion was mimicked by a moving Ionization Chamber (IC) 2D-array.Mainresults. For the investigated static and 4D-optimized treatment delivery cases, real-time dose reconstruction was achieved with an average pencil beam dose calculation speed up to more than one order of magnitude smaller than the spot delivery. The reconstructed doses have been benchmarked against offline log-file based dose reconstruction with the TRiP98 treatment planning system, as well as QA measurements with the IC 2D-array, where an average gamma-index passing rate (3%/3 mm) of 99.8% and 98.3%, respectively, were achieved.Significance. This work provides the first real-time 4D-dose reconstruction engine for carbon ion therapy. The framework integration with the CNAO DDS paves the way for a swift transition to the clinics.
Collapse
Affiliation(s)
- C Galeone
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - T Steinsberger
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M Donetti
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - M C Martire
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
| | - F M Milian
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
- Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - R Sacchi
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - A Vignati
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - L Volz
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M Durante
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Condensed Matter Physics, TU Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica, Università Federico II, Napoli, Italy
| | - S Giordanengo
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - C Graeff
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Rydygier M, Skóra T, Kisielewicz K, Spaleniak A, Garbacz M, Lipa M, Foltyńska G, Góra E, Gajewski J, Krzempek D, Kopeć R, Ruciński A. Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis. Cancers (Basel) 2024; 16:3128. [PMID: 39335100 PMCID: PMC11430589 DOI: 10.3390/cancers16183128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Applying a proton beam in radiotherapy enables precise irradiation of the tumor volume, but only for continuous assessment of changes in patient anatomy. Proton beam range uncertainties in the treatment process may originate not only from physical beam properties but also from patient-specific factors such as tumor shrinkage, edema formation and sinus filling, which are not incorporated in tumor volume safety margins. In this paper, we evaluated variations in dose distribution in proton therapy resulting from the differences observed in the control tomographic images and the dosimetric influence of applied adaptive treatment. The data from weekly computed tomography (CT) control scans of 21 patients, which serve as the basis for adaptive radiotherapy, were used for this study. Dosimetric analysis of adaptive proton therapy (APT) was performed on patients with head and neck (H&N) area tumors who were divided into two groups: patients with tumors in the sinus/nasal area and patients with tumors in the brain area. For this analysis, the reference treatment plans were forward-calculated using weekly control CT scans. A comparative evaluation of organ at risk (OAR) dose-volume histogram (DVH) parameters, as well as conformity and homogeneity indices, was conducted between the initial and recalculated dose distributions to assess the necessity of the adaptation process in terms of dosimetric parameters. Changes in PTV volume after replanning were observed in seventeen patient cases, showing a discrepancy of over 1 cm3 in ten cases. In these cases, tumor progression occurred in 30% of patients, while regression was observed in 70%. The statistical analysis indicates that the use of the adaptive planning procedure results in a statistically significant improvement in dose distribution, particularly in the PTV area. The findings led to the conclusion that the adaptive procedure provides significant advantages in terms of dose distribution within the treated volume. However, when considering the entire patient group, APT did not result in a statistically significant dose reduction in OARs (α = 0.05).
Collapse
Affiliation(s)
- Marzena Rydygier
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Tomasz Skóra
- National Oncology Institute—National Research Institute, Krakow Branch, PL31115 Kraków, Poland
| | - Kamil Kisielewicz
- National Oncology Institute—National Research Institute, Krakow Branch, PL31115 Kraków, Poland
| | - Anna Spaleniak
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Magdalena Garbacz
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Monika Lipa
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Gabriela Foltyńska
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Eleonora Góra
- National Oncology Institute—National Research Institute, Krakow Branch, PL31115 Kraków, Poland
| | - Jan Gajewski
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Dawid Krzempek
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Renata Kopeć
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| | - Antoni Ruciński
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL31342 Kraków, Poland; (M.R.)
| |
Collapse
|
8
|
Bookbinder A, Bobić M, Sharp GC, Nenoff L. An operator-independent quality assurance system for automatically generated structure sets. Phys Med Biol 2024; 69:175003. [PMID: 39047780 DOI: 10.1088/1361-6560/ad6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Objective. This study describes geometry-based and intensity-based tools for quality assurance (QA) of automatically generated structures for online adaptive radiotherapy, and designs an operator-independent traffic light system that identifies erroneous structure sets.Approach.A cohort of eight head and neck (HN) patients with daily CBCTs was selected for test development. Radiotherapy contours were propagated from planning computed tomography (CT) to daily cone beam CT (CBCT) using deformable image registration. These propagated structures were visually verified for acceptability. For each CBCT, several error scenarios were used to generate what were judged unacceptable structures. Ten additional HN patients with daily CBCTs and different error scenarios were selected for validation. A suite of tests based on image intensity, intensity gradient, and structure geometry was developed using acceptable and unacceptable HN planning structures. Combinations of one test applied to one structure, referred to as structure-test combinations, were selected for inclusion in the QA system based on their discriminatory power. A traffic light system was used to aggregate the structure-test combinations, and the system was evaluated on all fractions of the ten validation HN patients.Results.The QA system distinguished between acceptable and unacceptable fractions with high accuracy, labeling 294/324 acceptable fractions as green or yellow and 19/20 unacceptable fractions as yellow or red.Significance.This study demonstrates a system to supplement manual review of radiotherapy planning structures. Automated QA is performed by aggregating results from multiple intensity- and geometry-based tests.
Collapse
Affiliation(s)
- Alexander Bookbinder
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- New York Proton Center, New York, NY, United States of America
| | - Mislav Bobić
- ETH Zürich, Zürich, Switzerland
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| |
Collapse
|
9
|
Bobić M, Choulilitsa E, Lee H, Czerska K, Christensen JB, Mayor A, Safai S, Winey BA, Weber DC, Lomax AJ, Paganetti H, Nesteruk KP, Albertini F. Multi-institutional experimental validation of online adaptive proton therapy workflows. Phys Med Biol 2024; 69:165021. [PMID: 39025115 DOI: 10.1088/1361-6560/ad6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Objective.To experimentally validate two online adaptive proton therapy (APT) workflows using Gafchromic EBT3 films and optically stimulated luminescent dosimeters (OSLDs) in an anthropomorphic head-and-neck phantom.Approach.A three-field proton plan was optimized on the planning CT of the head-and-neck phantom with 2.0 Gy(RBE) per fraction prescribed to the clinical target volume. Four fractions were simulated by varying the internal anatomy of the phantom. Three distinct methods were delivered: daily APT researched by the Paul Scherrer Institute (DAPTPSI), online adaptation researched by the Massachusetts General Hospital (OAMGH), and a non-adaptive (NA) workflow. All methods were implemented and measured at PSI. DAPTPSIperformed full online replanning based on analytical dose calculation, optimizing to the same objectives as the initial treatment plan. OAMGHperformed Monte-Carlo-based online plan adaptation by only changing the fluences of a subset of proton beamlets, mimicking the planned dose distribution. NA delivered the initial plan with a couch-shift correction based on in-room imaging. For all 12 deliveries, two films and two sets of OSLDs were placed at different locations in the phantom.Main results.Both adaptive methods showed improved dosimetric results compared to NA. For film measurements in the presence of anatomical variations, the [min-max] gamma pass rates (3%/3 mm) between measured and clinically approved doses were [91.5%-96.1%], [94.0%-95.8%], and [67.2%-93.1%] for DAPTPSI, OAMGH, and NA, respectively. The OSLDs confirmed the dose calculations in terms of absolute dosimetry. Between the two adaptive workflows, OAMGHshowed improved target coverage, while DAPTPSIshowed improved normal tissue sparing, particularly relevant for the brainstem.Significance.This is the first multi-institutional study to experimentally validate two different concepts with respect to online APT workflows. It highlights their respective dosimetric advantages, particularly in managing interfractional variations in patient anatomy that cannot be addressed by non-adaptive methods, such as internal anatomy changes.
Collapse
Affiliation(s)
- Mislav Bobić
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Evangelia Choulilitsa
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | | | | | | | | - Brian A Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Damien C Weber
- Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Antony J Lomax
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | |
Collapse
|
10
|
Quarz A, Volz L, Antink CH, Durante M, Graeff C. Deep learning-based voxel sampling for particle therapy treatment planning. Phys Med Biol 2024; 69:155014. [PMID: 38917844 DOI: 10.1088/1361-6560/ad5bba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Objective.Scanned particle therapy often requires complex treatment plans, robust optimization, as well as treatment adaptation. Plan optimization is especially complicated for heavy ions due to the variable relative biological effectiveness. We present a novel deep-learning model to select a subset of voxels in the planning process thus reducing the planning problem size for improved computational efficiency.Approach.Using only a subset of the voxels in target and organs at risk (OARs) we produced high-quality treatment plans, but heuristic selection strategies require manual input. We designed a deep-learning model based onP-Net to obtain an optimal voxel sampling without relying on patient-specific user input. A cohort of 70 head and neck patients that received carbon ion therapy was used for model training (50), validation (10) and testing (10). For training, a total of 12 500 carbon ion plans were optimized, using a highly efficient artificial intelligence (AI) infrastructure implemented into a research treatment planning platform. A custom loss function increased sampling density in underdosed regions, while aiming to reduce the total number of voxels.Main results.On the test dataset, the number of voxels in the optimization could be reduced by 84.8% (median) at <1% median loss in plan quality. When the model was trained to reduce sampling in the target only while keeping all voxels in OARs, a median reduction up to 71.6% was achieved, with 0.5% loss in the plan quality. The optimization time was reduced by a factor of 7.5 for the total AI selection model and a factor of 3.7 for the model with only target selection.Significance.The novel deep-learning voxel sampling technique achieves a significant reduction in computational time with a negligible loss in the plan quality. The reduction in optimization time can be especially useful for future real-time adaptation strategies.
Collapse
Affiliation(s)
- A Quarz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - L Volz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - C Hoog Antink
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy
| | - C Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
11
|
Fenwick JD, Mayhew C, Jolly S, Amos RA, Hawkins MA. Navigating the straits: realizing the potential of proton FLASH through physics advances and further pre-clinical characterization. Front Oncol 2024; 14:1420337. [PMID: 39022584 PMCID: PMC11252699 DOI: 10.3389/fonc.2024.1420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Ultra-high dose-rate 'FLASH' radiotherapy may be a pivotal step forward for cancer treatment, widening the therapeutic window between radiation tumour killing and damage to neighbouring normal tissues. The extent of normal tissue sparing reported in pre-clinical FLASH studies typically corresponds to an increase in isotoxic dose-levels of 5-20%, though gains are larger at higher doses. Conditions currently thought necessary for FLASH normal tissue sparing are a dose-rate ≥40 Gy s-1, dose-per-fraction ≥5-10 Gy and irradiation duration ≤0.2-0.5 s. Cyclotron proton accelerators are the first clinical systems to be adapted to irradiate deep-seated tumours at FLASH dose-rates, but even using these machines it is challenging to meet the FLASH conditions. In this review we describe the challenges for delivering FLASH proton beam therapy, the compromises that ensue if these challenges are not addressed, and resulting dosimetric losses. Some of these losses are on the same scale as the gains from FLASH found pre-clinically. We therefore conclude that for FLASH to succeed clinically the challenges must be systematically overcome rather than accommodated, and we survey physical and pre-clinical routes for achieving this.
Collapse
Affiliation(s)
- John D. Fenwick
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christopher Mayhew
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Simon Jolly
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Richard A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria A. Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Clinical Oncology, Radiotherapy Department, University College London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Ersted Rasmussen M, Dueholm Vestergaard C, Folsted Kallehauge J, Ren J, Haislund Guldberg M, Nørrevang O, Vindelev Elstrøm U, Sofia Korreman S. RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows. Phys Imaging Radiat Oncol 2024; 31:100607. [PMID: 39071159 PMCID: PMC11283118 DOI: 10.1016/j.phro.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.
Collapse
Affiliation(s)
- Mathis Ersted Rasmussen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Casper Dueholm Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jesper Folsted Kallehauge
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - Jintao Ren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Maiken Haislund Guldberg
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - Ole Nørrevang
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - Ulrik Vindelev Elstrøm
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - Stine Sofia Korreman
- Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
13
|
Oud M, Breedveld S, Rojo-Santiago J, Giżyńska MK, Kroesen M, Habraken S, Perkó Z, Heijmen B, Hoogeman M. A fast and robust constraint-based online re-optimization approach for automated online adaptive intensity modulated proton therapy in head and neck cancer. Phys Med Biol 2024; 69:075007. [PMID: 38373350 DOI: 10.1088/1361-6560/ad2a98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-optimization strategy is presented. In a retrospective study, this online re-optimization approach was compared to our trigger-based offline re-planning (offlineTBre-planning) schedule, including extensive robustness analyses.Approach. The online re-optimization method employs automated multi-criterial re-optimization, using robust optimization with 1 mm setup-robustness settings (in contrast to 3 mm for offlineTBre-planning). Hard planning constraints and spot addition are used to enforce adequate target coverage, avoid prohibitively large maximum doses and minimize organ-at-risk doses. For 67 repeat-CTs from 15 patients, fraction doses of the two strategies were compared for the CTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range robustness settings were simulated using polynomial chaos expansion for fast and accurate dose calculations.Main results. For 14/67 repeat-CTs, offlineTBre-planning resulted in <50% probability ofD98%≥ 95% of the prescribed dose (Dpres) in one or both CTVs, which never happened with online re-optimization. With offlineTBre-planning, eight repeat-CTs had zero probability of obtainingD98%≥ 95%Dpresfor CTV7000, while the minimum probability with online re-optimization was 81%. Risks of xerostomia and dysphagia grade ≥ II were reduced by 3.5 ± 1.7 and 3.9 ± 2.8 percentage point [mean ± SD] (p< 10-5for both). In online re-optimization, adjustment of spot configuration followed by spot-intensity re-optimization took 3.4 min on average.Significance. The fast online re-optimization strategy always prevented substantial losses of target coverage caused by day-to-day anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of this, online re-optimization could be performed with smaller setup robustness settings, contributing to improved organs-at-risk sparing.
Collapse
Affiliation(s)
- Michelle Oud
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| | - Sebastiaan Breedveld
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Jesús Rojo-Santiago
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| | | | - Michiel Kroesen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Radiation Oncology, Delft, The Netherlands
| | - Steven Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| | - Zoltán Perkó
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, The Netherlands
| | - Ben Heijmen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| |
Collapse
|
14
|
Xu Y, Jin W, Butkus M, De Ornelas M, Cyriac J, Studenski MT, Padgett K, Simpson G, Samuels S, Samuels M, Dogan N. Cone beam CT-based adaptive intensity modulated proton therapy assessment using automated planning for head-and-neck cancer. Radiat Oncol 2024; 19:13. [PMID: 38263237 PMCID: PMC10804468 DOI: 10.1186/s13014-024-02406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND To assess the feasibility of CBCT-based adaptive intensity modulated proton therapy (IMPT) using automated planning for treatment of head and neck (HN) cancers. METHODS Twenty HN cancer patients who received radiotherapy and had pretreatment CBCTs were included in this study. Initial IMPT plans were created using automated planning software for all patients. Synthetic CTs (sCT) were then created by deforming the planning CT (pCT) to the pretreatment CBCTs. To assess dose calculation accuracy on sCTs, repeat CTs (rCTs) were deformed to the pretreatment CBCT obtained on the same day to create deformed rCT (rCTdef), serving as gold standard. The dose recalculated on sCT and on rCTdef were compared by using Gamma analysis. The accuracy of DIR generated contours was also assessed. To explore the potential benefits of adaptive IMPT, two sets of plans were created for each patient, a non-adapted IMPT plan and an adapted IMPT plan calculated on weekly sCT images. The weekly doses for non-adaptive and adaptive IMPT plans were accumulated on the pCT, and the accumulated dosimetric parameters of two sets were compared. RESULTS Gamma analysis of the dose recalculated on sCT and rCTdef resulted in a passing rate of 97.9% ± 1.7% using 3 mm/3% criteria. With the physician-corrected contours on the sCT, the dose deviation range of using sCT to estimate mean dose for the most organ at risk (OARs) can be reduced to (- 2.37%, 2.19%) as compared to rCTdef, while for V95 of primary or secondary CTVs, the deviation can be controlled within (- 1.09%, 0.29%). Comparison of the accumulated doses from the adaptive planning against the non-adaptive plans reduced mean dose to constrictors (- 1.42 Gy ± 2.79 Gy) and larynx (- 2.58 Gy ± 3.09 Gy). The reductions result in statistically significant reductions in the normal tissue complication probability (NTCP) of larynx edema by 7.52% ± 13.59%. 4.5% of primary CTVs, 4.1% of secondary CTVs, and 26.8% tertiary CTVs didn't meet the V95 > 95% constraint on non-adapted IMPT plans. All adaptive plans were able to meet the coverage constraint. CONCLUSION sCTs can be a useful tool for accurate proton dose calculation. Adaptive IMPT resulted in better CTV coverage, OAR sparing and lower NTCP for some OARs as compared with non-adaptive IMPT.
Collapse
Affiliation(s)
- Yihang Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - William Jin
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Butkus
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mariluz De Ornelas
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan Cyriac
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew T Studenski
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kyle Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Garrett Simpson
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart Samuels
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Samuels
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Bobić M, Christensen JB, Lee H, Choulilitsa E, Czerska K, Togno M, Safai S, Yukihara EG, Winey BA, Lomax AJ, Paganetti H, Albertini F, Nesteruk KP. Optically stimulated luminescence dosimeters for simultaneous measurement of point dose and dose-weighted LET in an adaptive proton therapy workflow. Front Oncol 2024; 13:1333039. [PMID: 38510267 PMCID: PMC10951997 DOI: 10.3389/fonc.2023.1333039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 03/22/2024] Open
Abstract
Purpose To demonstrate the suitability of optically stimulated luminescence detectors (OSLDs) for accurate simultaneous measurement of the absolute point dose and dose-weighted linear energy transfer (LETD) in an anthropomorphic phantom for experimental validation of daily adaptive proton therapy. Methods A clinically realistic intensity-modulated proton therapy (IMPT) treatment plan was created based on a CT of an anthropomorphic head-and-neck phantom made of tissue-equivalent material. The IMPT plan was optimized with three fields to deliver a uniform dose to the target volume covering the OSLDs. Different scenarios representing inter-fractional anatomical changes were created by modifying the phantom. An online adaptive proton therapy workflow was used to recover the daily dose distribution and account for the applied geometry changes. To validate the adaptive workflow, measurements were performed by irradiating Al2O3:C OSLDs inside the phantom. In addition to the measurements, retrospective Monte Carlo simulations were performed to compare the absolute dose and dose-averaged LET (LETD) delivered to the OSLDs. Results The online adaptive proton therapy workflow was shown to recover significant degradation in dose conformity resulting from large anatomical and positioning deviations from the reference plan. The Monte Carlo simulations were in close agreement with the OSLD measurements, with an average relative error of 1.4% for doses and 3.2% for LETD. The use of OSLDs for LET determination allowed for a correction for the ionization quenched response. Conclusion The OSLDs appear to be an excellent detector for simultaneously assessing dose and LET distributions in proton irradiation of an anthropomorphic phantom. The OSLDs can be cut to almost any size and shape, making them ideal for in-phantom measurements to probe the radiation quality and dose in a predefined region of interest. Although we have presented the results obtained in the experimental validation of an adaptive proton therapy workflow, the same approach can be generalized and used for a variety of clinical innovations and workflow developments that require accurate assessment of point dose and/or average LET.
Collapse
Affiliation(s)
- Mislav Bobić
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Evangelia Choulilitsa
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | | | - Brian A. Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Antony J. Lomax
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Konrad P. Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
17
|
Herrick M, Penfold S, Santos A, Hickson K. Correction to: A systematic review of volumetric image guidance in proton therapy. Phys Eng Sci Med 2023; 46:977-979. [PMID: 37470931 PMCID: PMC10480235 DOI: 10.1007/s13246-023-01301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Affiliation(s)
- Mitchell Herrick
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Physics, University of Adelaide, Adelaide, Australia.
| | - Scott Penfold
- Department of Physics, University of Adelaide, Adelaide, Australia
- Australian Bragg Centre for Proton Therapy and Research, University of Adelaide, Adelaide, Australia
| | - Alexandre Santos
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, Australia
- Department of Physics, University of Adelaide, Adelaide, Australia
- Australian Bragg Centre for Proton Therapy and Research, University of Adelaide, Adelaide, Australia
| | - Kevin Hickson
- SA Medical Imaging, Adelaide, Australia
- University of South Australia, Allied Health & Human Performance, Adelaide, Australia
| |
Collapse
|
18
|
Taasti VT, Hattu D, Peeters S, van der Salm A, van Loon J, de Ruysscher D, Nilsson R, Andersson S, Engwall E, Unipan M, Canters R. Clinical evaluation of synthetic computed tomography methods in adaptive proton therapy of lung cancer patients. Phys Imaging Radiat Oncol 2023; 27:100459. [PMID: 37397874 PMCID: PMC10314284 DOI: 10.1016/j.phro.2023.100459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Background and purpose Efficient workflows for adaptive proton therapy are of high importance. This study evaluated the possibility to replace repeat-CTs (reCTs) with synthetic CTs (sCTs), created based on cone-beam CTs (CBCTs), for flagging the need of plan adaptations in intensity-modulated proton therapy (IMPT) treatment of lung cancer patients. Materials and methods Forty-two IMPT patients were retrospectively included. For each patient, one CBCT and a same-day reCT were included. Two commercial sCT methods were applied; one based on CBCT number correction (Cor-sCT), and one based on deformable image registration (DIR-sCT). The clinical reCT workflow (deformable contour propagation and robust dose re-computation) was performed on the reCT as well as the two sCTs. The deformed target contours on the reCT/sCTs were checked by radiation oncologists and edited if needed. A dose-volume-histogram triggered plan adaptation method was compared between the reCT and the sCTs; patients needing a plan adaptation on the reCT but not on the sCT were denoted false negatives. As secondary evaluation, dose-volume-histogram comparison and gamma analysis (2%/2mm) were performed between the reCT and sCTs. Results There were five false negatives, two for Cor-sCT and three for DIR-sCT. However, three of these were only minor, and one was caused by tumour position differences between the reCT and CBCT and not by sCT quality issues. An average gamma pass rate of 93% was obtained for both sCT methods. Conclusion Both sCT methods were judged to be of clinical quality and valuable for reducing the amount of reCT acquisitions.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anke van der Salm
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
19
|
Bohannon D, Janopaul-Naylor J, Rudra S, Yang X, Chang CW, Wang Y, Ma C, Patel SA, McDonald MW, Zhou J. Prediction of plan adaptation in head and neck cancer proton therapy using clinical, radiographic, and dosimetric features. Acta Oncol 2023:1-8. [PMID: 37335043 DOI: 10.1080/0284186x.2023.2224050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Because proton head and neck (HN) treatments are sensitive to anatomical changes, plan adaptation (re-plan) during the treatment course is needed for a significant portion of patients. We aim to predict re-plan at plan review stage for HN proton therapy with a neural network (NN) model trained with patients' dosimetric and clinical features. The model can serve as a valuable tool for planners to assess the probability of needing to revise the current plan. METHODS AND MATERIALS Mean beam dose heterogeneity index (BHI), defined as the ratio of the maximum beam dose to the prescription dose, plan robustness features (clinical target volume (CTV), V100 changes, and V100 > 95% passing rates in 21 robust evaluation scenarios), as well as clinical features (e.g., age, tumor site, and surgery/chemotherapy status) were gathered from 171 patients treated at our proton center in 2020, with a median age of 64 and stages from I-IVc across 13 HN sites. Statistical analyses of dosimetric parameters and clinical features were conducted between re-plan and no-replan groups. A NN was trained and tested using these features. Receiver operating characteristic (ROC) analysis was conducted to evaluate the performance of the prediction model. A sensitivity analysis was done to determine feature importance. RESULTS Mean BHI in the re-plan group was significantly higher than the no-replan group (p < .01). Tumor site (p < .01), chemotherapy status (p < .01), and surgery status (p < .01) were significantly correlated to re-plan. The model had sensitivities/specificities of 75.0%/77.4%, respectively, and an area under the ROC curve of .855. CONCLUSION There are several dosimetric and clinical features that correlate to re-plans, and NNs trained with these features can be used to predict HN re-plans, which can be used to reduce re-plan rate by improving plan quality.
Collapse
Affiliation(s)
- D Bohannon
- Department of Nuclear and Radiological Engineering, Georgia institute of Technology, Atlanta, GA, USA
| | - J Janopaul-Naylor
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - S Rudra
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - X Yang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - C W Chang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Y Wang
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - C Ma
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - S A Patel
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - M W McDonald
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - J Zhou
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Lalonde A, Bobić M, Sharp GC, Chamseddine I, Winey B, Paganetti H. Evaluating the effect of setup uncertainty reduction and adaptation to geometric changes on normal tissue complication probability using online adaptive head and neck intensity modulated proton therapy. Phys Med Biol 2023; 68:115018. [PMID: 37164020 PMCID: PMC10351361 DOI: 10.1088/1361-6560/acd433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Objective. To evaluate the impact of setup uncertainty reduction (SUR) and adaptation to geometrical changes (AGC) on normal tissue complication probability (NTCP) when using online adaptive head and neck intensity modulated proton therapy (IMPT).Approach.A cohort of ten retrospective head and neck cancer patients with daily scatter corrected cone-beam CT (CBCT) was studied. For each patient, two IMPT treatment plans were created: one with a 3 mm setup uncertainty robustness setting and one with no explicit setup robustness. Both plans were recalculated on the daily CBCT considering three scenarios: the robust plan without adaptation, the non-robust plan without adaptation and the non-robust plan with daily online adaptation. Online-adaptation was simulated using an in-house developed workflow based on GPU-accelerated Monte Carlo dose calculation and partial spot-intensity re-optimization. Dose distributions associated with each scenario were accumulated on the planning CT, where NTCP models for six toxicities were applied. NTCP values from each scenario were intercompared to quantify the reduction in toxicity risk induced by SUR alone, AGC alone and SUR and AGC combined. Finally, a decision tree was implemented to assess the clinical significance of the toxicity reduction associated with each mechanism.Main results. For most patients, clinically meaningful NTCP reductions were only achieved when SUR and AGC were performed together. In these conditions, total reductions in NTCP of up to 30.48 pp were obtained, with noticeable NTCP reductions for aspiration, dysphagia and xerostomia (mean reductions of 8.25, 5.42 and 5.12 pp respectively). While SUR had a generally larger impact than AGC on NTCP reductions, SUR alone did not induce clinically meaningful toxicity reductions in any patient, compared to only one for AGC alone.SignificanceOnline adaptive head and neck proton therapy can only yield clinically significant reductions in the risk of long-term side effects when combining the benefits of SUR and AGC.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- ETH Zürich, Zürich, Switzerland
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Qiu Z, Olberg S, den Hertog D, Ajdari A, Bortfeld T, Pursley J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/accdb2. [PMID: 37068488 PMCID: PMC10637515 DOI: 10.1088/1361-6560/accdb2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Online adaptive radiation therapy aims at adapting a patient's treatment plan to their current anatomy to account for inter-fraction variations before daily treatment delivery. As this process needs to be accomplished while the patient is immobilized on the treatment couch, it requires time-efficient adaptive planning methods to generate a quality daily treatment plan rapidly. The conventional planning methods do not meet the time requirement of online adaptive radiation therapy because they often involve excessive human intervention, significantly prolonging the planning phase. This article reviews the planning strategies employed by current commercial online adaptive radiation therapy systems, research on online adaptive planning, and artificial intelligence's potential application to online adaptive planning.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Business Analytics, University of Amsterdam, The Netherlands
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Dick den Hertog
- Department of Business Analytics, University of Amsterdam, The Netherlands
| | - Ali Ajdari
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Thomas Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| |
Collapse
|
22
|
Trnkova P, Zhang Y, Toshito T, Heijmen B, Richter C, Aznar MC, Albertini F, Bolsi A, Daartz J, Knopf AC, Bertholet J. A survey of practice patterns for adaptive particle therapy for interfractional changes. Phys Imaging Radiat Oncol 2023; 26:100442. [PMID: 37197154 PMCID: PMC10183663 DOI: 10.1016/j.phro.2023.100442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Background and purpose Anatomical changes may compromise the planned target coverage and organs-at-risk dose in particle therapy. This study reports on the practice patterns for adaptive particle therapy (APT) to evaluate current clinical practice and wishes and barriers to further implementation. Materials and methods An institutional questionnaire was distributed to PT centres worldwide (7/2020-6/2021) asking which type of APT was used, details of the workflow, and what the wishes and barriers to implementation were. Seventy centres from 17 countries participated. A three-round Delphi consensus analysis (10/2022) among the authors followed to define recommendations on required actions and future vision. Results Out of the 68 clinically operational centres, 84% were users of APT for at least one treatment site with head and neck being most common. APT was mostly performed offline with only two online APT users (plan-library). No centre used online daily re-planning. Daily 3D imaging was used for APT by 19% of users. Sixty-eight percent of users had plans to increase their use or change their technique for APT. The main barrier was "lack of integrated and efficient workflows". Automation and speed, reliable dose deformation for dose accumulation and higher quality of in-room volumetric imaging were identified as the most urgent task for clinical implementation of online daily APT. Conclusion Offline APT was implemented by the majority of PT centres. Joint efforts between industry research and clinics are needed to translate innovations into efficient and clinically feasible workflows for broad-scale implementation of online APT.
Collapse
Affiliation(s)
- Petra Trnkova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Corresponding author.
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus University Medical Center (Erasmus MC), Rotterdam, the Netherlands
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Marianne C. Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Antje C. Knopf
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
23
|
Bobić M, Lalonde A, Nesteruk KP, Lee H, Nenoff L, Gorissen BL, Bertolet A, Busse PM, Chan AW, Winey BA, Sharp GC, Verburg JM, Lomax AJ, Paganetti H. Large anatomical changes in head-and-neck cancers – a dosimetric comparison of online and offline adaptive proton therapy. Clin Transl Radiat Oncol 2023; 40:100625. [PMID: 37090849 PMCID: PMC10120292 DOI: 10.1016/j.ctro.2023.100625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose This work evaluates an online adaptive (OA) workflow for head-and-neck (H&N) intensity-modulated proton therapy (IMPT) and compares it with full offline replanning (FOR) in patients with large anatomical changes. Methods IMPT treatment plans are created retrospectively for a cohort of eight H&N cancer patients that previously required replanning during the course of treatment due to large anatomical changes. Daily cone-beam CTs (CBCT) are acquired and corrected for scatter, resulting in 253 analyzed fractions. To simulate the FOR workflow, nominal plans are created on the planning-CT and delivered until a repeated-CT is acquired; at this point, a new plan is created on the repeated-CT. To simulate the OA workflow, nominal plans are created on the planning-CT and adapted at each fraction using a simple beamlet weight-tuning technique. Dose distributions are calculated on the CBCTs with Monte Carlo for both delivery methods. The total treatment dose is accumulated on the planning-CT. Results Daily OA improved target coverage compared to FOR despite using smaller target margins. In the high-risk CTV, the median D98 degradation was 1.1 % and 2.1 % for OA and FOR, respectively. In the low-risk CTV, the same metrics yield 1.3 % and 5.2 % for OA and FOR, respectively. Smaller setup margins of OA reduced the dose to all OARs, which was most relevant for the parotid glands. Conclusion Daily OA can maintain prescription doses and constraints over the course of fractionated treatment, even in cases of large anatomical changes, reducing the necessity for manual replanning in H&N IMPT.
Collapse
|
24
|
Huiskes M, Astreinidou E, Kong W, Breedveld S, Heijmen B, Rasch C. Dosimetric impact of adaptive proton therapy in head and neck cancer - A review. Clin Transl Radiat Oncol 2023; 39:100598. [PMID: 36860581 PMCID: PMC9969246 DOI: 10.1016/j.ctro.2023.100598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Background Intensity Modulated Proton Therapy (IMPT) in head and neck cancer (HNC) is susceptible to anatomical changes and patient set-up inaccuracies during the radiotherapy course, which can cause discrepancies between planned and delivered dose. The discrepancies can be counteracted by adaptive replanning strategies. This article reviews the observed dosimetric impact of adaptive proton therapy (APT) and the timing to perform a plan adaptation in IMPT in HNC. Methods A literature search of articles published in PubMed/MEDLINE, EMBASE and Web of Science from January 2010 to March 2022 was performed. Among a total of 59 records assessed for possible eligibility, ten articles were included in this review. Results Included studies reported on target coverage deterioration in IMPT plans during the RT course, which was recovered with the application of an APT approach. All APT plans showed an average improved target coverage for the high- and low-dose targets as compared to the accumulated dose on the planned plans. Dose improvements up to 2.5 Gy (3.5 %) and up to 4.0 Gy (7.1 %) in the D98 of the high- and low dose targets were observed with APT. Doses to the organs at risk (OARs) remained equal or decreased slightly after APT was applied. In the included studies, APT was largely performed once, which resulted in the largest target coverage improvement, but eventual additional APT improved the target coverage further. There is no data showing what is the most appropriate timing for APT. Conclusion APT during IMPT for HNC patients improves target coverage. The largest improvement in target coverage was found with a single adaptive intervention, and an eventual second or more frequent APT application improved the target coverage further. Doses to the OARs remained equal or decreased slightly after applying APT. The most optimal timing for APT is yet to be determined.
Collapse
Affiliation(s)
- Merle Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleftheria Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wens Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Coen Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| |
Collapse
|
25
|
Zhang Y, Alshaikhi J, Tan W, Royle G, Bär E. A probability model for anatomical robust optimisation in head and neck cancer proton therapy. Phys Med Biol 2022; 68:015014. [PMID: 36562611 DOI: 10.1088/1361-6560/aca877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
Objective.Develop an anatomical model based on the statistics of the population data and evaluate the model for anatomical robust optimisation in head and neck cancer proton therapy.Approach.Deformable image registration was used to build the probability model (PM) that captured the major deformation from patient population data and quantified the probability of each deformation. A cohort of 20 nasopharynx patients was included in this retrospective study. Each patient had a planning CT and 6 weekly CTs during radiotherapy. We applied the model to 5 test patients. Each test patient used the remaining 19 training patients to build the PM and estimate the likelihood of a certain anatomical deformation to happen. For each test patient, a spot scanning proton plan was created. The PM was evaluated using proton spot location deviation and dose distribution.Main results. Using the proton spot range, the PM can simulate small non-rigid variations in the first treatment week within 0.21 ± 0.13 mm. For overall anatomical uncertainty prediction, the PM can reduce anatomical uncertainty from 4.47 ± 1.23 mm (no model) to 1.49 ± 1.08 mm at week 6. The 95% confidence interval (CI) of dose metric variations caused by actual anatomical deformations in the first week is -0.59% ∼ -0.31% for low-risk CTD95, and 0.84-3.04 Gy for parotidDmean. On the other hand, the 95% CI of dose metric variations simulated by the PM at the first week is -0.52 ∼ -0.34% for low-risk CTVD95, and 0.58 ∼ 2.22 Gy for parotidDmean.Significance.The PM improves the estimation accuracy of anatomical uncertainty compared to the previous models and does not depend on the acquisition of the weekly CTs during the treatment. We also provided a solution to quantify the probability of an anatomical deformation. The potential of the model for anatomical robust optimisation is discussed.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jailan Alshaikhi
- Saudi Proton Therapy Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University Shenzhen 518101, People's Republic of China
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
- University College London Hospitals NHS Foundation Trust, Radiotherapy Physics, 250 Euston Road, London NW1 2PG, United Kingdom
| |
Collapse
|
26
|
Zhang Y, Alshaikhi J, Amos RA, Tan W, Anaya VM, Pang Y, Royle G, Bär E. Pre-treatment analysis of non-rigid variations can assist robust intensity-modulated proton therapy plan selection for head and neck patients. Med Phys 2022; 49:7683-7693. [PMID: 36083223 PMCID: PMC10092578 DOI: 10.1002/mp.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/13/2022] [Accepted: 08/27/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To incorporate small non-rigid variations of head and neck patients into the robust evaluation of intensity-modulated proton therapy (IMPT) for the selection of robust treatment plans. METHODS A cohort of 20 nasopharynx cancer patients with weekly kilovoltage CT (kVCT) and 15 oropharynx cancer patients with weekly cone-beam CT (CBCT) were retrospectively included. Anatomical variations between week 0/week 1 of treatment were acquired using deformable image registration (DIR) for all 35 patients and then applied to the planning CT of four patients who have kVCT scanned each week to simulate potential small non-rigid variations (sNRVs). The robust evaluations were conducted on IMPT plans with: (1) different number of beam fields from 3-field to 5-field; (2) different beam angles. The robust evaluation before treatment, including the sNRVs and setup uncertainty, referred to as sNRV+R evaluation was compared with the conventional evaluation (without sNRVs) in terms of robustness consistency with the gold standard evaluation based on weekly CT. RESULTS Among four patients (490 scenarios), we observed a maximum difference in the sNRV+R evaluation to the nominal dose of: 9.37% dose degradation on D95 of clinical target volumes (CTVs), increase in mean dose (D mean $_{\text{mean}}$ ) of parotid 11.87 Gy, increase in max dose (D max $_{\text{max}}$ ) of brainstem 20.82 Gy. In contrast, in conventional evaluation, we observed a maximum difference to the nominal dose of: 7.58% dose degradation on D95 of the CTVs, increase in parotid D mean $_{\text{mean}}$ by 4.88 Gy, increase in brainstem D max $_{\text{max}}$ by 13.5 Gy. In the measurement of the robustness ranking consistency with the gold standard evaluation, the sNRV+R evaluation was better or equal to the conventional evaluation in 77% of cases, particularly, better on spinal cord, parotid glands, and low-risk CTV. CONCLUSION This study demonstrated the additional dose discrepancy that sNRVs can make. The inclusion of sNRVs can be beneficial to robust evaluation, providing information on clinical uncertainties additional to the conventional rigid isocenter shift.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, UK
| | - Jailan Alshaikhi
- Saudi Proton Therapy Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Richard A Amos
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, UK
| | - Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University Shenzhen, Guangdong, China
| | - Virginia Marin Anaya
- University College London Hospitals NHS Foundation Trust, Radiotherapy Physics, London, UK
| | - Yaru Pang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, UK
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, UK
| | - Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, UK.,University College London Hospitals NHS Foundation Trust, Radiotherapy Physics, London, UK
| |
Collapse
|
27
|
An online adaptive plan library approach for intensity modulated proton therapy for head and neck cancer. Radiother Oncol 2022; 176:68-75. [PMID: 36150418 DOI: 10.1016/j.radonc.2022.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE In intensity modulated proton therapy (IMPT), the impact of setup errors and anatomical changes is commonly mitigated by robust optimization with population-based setup robustness (SR) settings and offline replanning. In this study we propose and evaluate an alternative approach based on daily plan selection from patient-specific pre-treatment established plan libraries (PLs). Clinical implementation of the PL strategy would be rather straightforward compared to daily online re-planning. MATERIALS AND METHODS For 15 head-and-neck cancer patients, the planning CT was used to generate a PL with 5 plans, robustly optimized for increasing SR: 0, 1, 2, 3, 5 mm, and 3% range robustness. Repeat CTs (rCTs) and realistic setup and range uncertainty distributions were used for simulation of treatment courses for the PL approach, treatments with fixed SR (fSR3) and a trigger-based offline adaptive schedule for 3 mm SR (fSR3OfA). Daily plan selection in the PL approach was based only on recomputed dose to the CTV on the rCT. RESULTS Compared to using fSR3 and fSR3OfA, the risk of xerostomia grade ≥ II & III and dysphagia ≥ grade III were significantly reduced with the PL. For 6/15 patients the risk of xerostomia and/or dysphagia ≥ grade II could be reduced by > 2% by using PL. For the other patients, adherence to target coverage constraints was often improved. fSR3OfA resulted in significantly improved coverage compared to PL for selected patients. CONCLUSION The proposed PL approach resulted in overall reduced NTCPs compared to fSR3 and fSR3OfA at limited cost in target coverage.
Collapse
|
28
|
Yao W, Zhang B, Han D, Polf J, Vedam S, Lasio G, Yi B. Use of CBCT plus plan robustness for reducing QACT frequency in intensity-modulated proton therapy: Head-and-neck cases. Med Phys 2022; 49:6794-6801. [PMID: 35933322 DOI: 10.1002/mp.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Anatomic variation has a significant dosimetric impact in intensity-modulated proton therapy. Weekly or biweekly computed tomography (CT) scans, called quality assurance CTs (QACTs), are used to monitor anatomic and resultant dose changes to determine whether adaptive plans are needed. Frequent CT scans result in unwanted QACT dose and increased clinical workloads. This study proposed utilizing patient setup cone-beam CTs (CBCTs) and treatment plan robustness to reduce the frequency of QACTs. METHODS We retrospectively analyzed data from 27 patients with head-and-neck cancer, including 594 CBCTs, 136 QACTs, and 19 adaptive plans. For each CBCT, water-equivalent thickness (WET) along the pencil-beam path was calculated. For each treatment plan, the WET of the first-day CBCT was used as the reference, and the mean WET changes (ΔWET) in each following CBCT was used as the surrogate of proton range change. Using CBCTs acquired prior to a QACT, we predicted the ΔWET on the QACT day by a linear regression model. The impact of range change on target dose was calculated as the predicted ΔWET weighted by the monitor units of each field. In addition, plan robustness was estimated from the robust dose-volume histograms (DVHs) and combined with ΔWET to reduce QACT frequency. Robustness was estimated from the distance between the DVH curves of the nominal and worst scenarios. RESULTS When the estimated mean ΔWET was <6.5 mm (or <7.5 mm if the robustness was >95%), the QACT could be skipped without missing any adaptive planning; otherwise a QACT was required. Overall, 41% of QACTs could be eliminated when ΔWET was <6.5 mm and 56% when ΔWET was <7.5 mm, and robustness was >95%. At least one QACT could have been omitted in 25 of the 27 cases under skipping thresholds at ΔWETs <7.5 mm and R > 95%. CONCLUSION This study suggests that the number of QACTs can be greatly reduced by calculating range change in patient setup CBCTs and can be further reduced by combining this information with analyses of plan robustness.
Collapse
Affiliation(s)
- Weiguang Yao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Baoshe Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dong Han
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Giovanni Lasio
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Byongyong Yi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Nesteruk KP, Bobić M, Sharp GC, Lalonde A, Winey BA, Nenoff L, Lomax AJ, Paganetti H. Low-Dose Computed Tomography Scanning Protocols for Online Adaptive Proton Therapy of Head-and-Neck Cancers. Cancers (Basel) 2022; 14:cancers14205155. [PMID: 36291939 PMCID: PMC9600085 DOI: 10.3390/cancers14205155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To evaluate the suitability of low-dose CT protocols for online plan adaptation of head-and-neck patients. METHODS We acquired CT scans of a head phantom with protocols corresponding to CT dose index volume CTDIvol in the range of 4.2-165.9 mGy. The highest value corresponds to the standard protocol used for CT simulations of 10 head-and-neck patients included in the study. The minimum value corresponds to the lowest achievable tube current of the GE Discovery RT scanner used for the study. For each patient and each low-dose protocol, the noise relative to the standard protocol, derived from phantom images, was applied to a virtual CT (vCT). The vCT was obtained from a daily CBCT scan corresponding to the fraction with the largest anatomical changes. We ran an established adaptive workflow twice for each low-dose protocol using a high-quality daily vCT and the corresponding low-dose synthetic vCT. For a relative comparison of the adaptation efficacy, two adapted plans were recalculated in the high-quality vCT and evaluated with the contours obtained through deformable registration of the planning CT. We also evaluated the accuracy of dose calculation in low-dose CT volumes using the standard CT protocol as reference. RESULTS The maximum differences in D98 between low-dose protocols and the standard protocol for the high-risk and low-risk CTV were found to be 0.6% and 0.3%, respectively. The difference in OAR sparing was up to 3%. The Dice similarity coefficient between propagated contours obtained with low-dose and standard protocols was above 0.982. The mean 2%/2 mm gamma pass rate for the lowest-dose image, using the standard protocol as reference, was found to be 99.99%. CONCLUSION The differences between low-dose protocols and the standard scanning protocol were marginal. Thus, low-dose CT protocols are suitable for online adaptive proton therapy of head-and-neck cancers. As such, considering scanning protocols used in our clinic, the imaging dose associated with online adaption of head-and-neck cancers treated with protons can be reduced by a factor of 40.
Collapse
Affiliation(s)
- Konrad P. Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Gregory C. Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian A. Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Antony J. Lomax
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
30
|
Lee H, Shin J, Verburg JM, Bobić M, Winey B, Schuemann J, Paganetti H. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8716. [PMID: 35926482 PMCID: PMC9513828 DOI: 10.1088/1361-6560/ac8716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Objective.Monte Carlo (MC) codes are increasingly used for accurate radiotherapy dose calculation. In proton therapy, the accuracy of the dose calculation algorithm is expected to have a more significant impact than in photon therapy due to the depth-dose characteristics of proton beams. However, MC simulations come at a considerable computational cost to achieve statistically sufficient accuracy. There have been efforts to improve computational efficiency while maintaining sufficient accuracy. Among those, parallelizing particle transportation using graphic processing units (GPU) achieved significant improvements. Contrary to the central processing unit, a GPU has limited memory capacity and is not expandable. It is therefore challenging to score quantities with large dimensions requiring extensive memory. The objective of this study is to develop an open-source GPU-based MC package capable of scoring those quantities.Approach.We employed a hash-table, one of the key-value pair data structures, to efficiently utilize the limited memory of the GPU and score the quantities requiring a large amount of memory. With the hash table, only voxels interacting with particles will occupy memory, and we can search the data efficiently to determine their address. The hash-table was integrated with a novel GPU-based MC code, moqui.Main results.The developed code was validated against an MC code widely used in proton therapy, TOPAS, with homogeneous and heterogeneous phantoms. We also compared the dose calculation results of clinical treatment plans. The developed code agreed with TOPAS within 2%, except for the fall-off and regions, and the gamma pass rates of the results were >99% for all cases with a 2 mm/2% criteria.Significance.We can score dose-influence matrix and dose-rate on a GPU for a 3-field H&N case with 10 GB of memory using moqui, which would require more than 100 GB of memory with the conventionally used array data structure.
Collapse
Affiliation(s)
- Hoyeon Lee
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jungwook Shin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, United States of America
| | - Joost M Verburg
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Mislav Bobić
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
- Department of Physics, ETH, Zürich 8092, Switzerland
| | - Brian Winey
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Harald Paganetti
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
31
|
Nenoff L, Buti G, Bobić M, Lalonde A, Nesteruk KP, Winey B, Sharp GC, Sudhyadhom A, Paganetti H. Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans. Cancers (Basel) 2022; 14:cancers14163926. [PMID: 36010919 PMCID: PMC9406068 DOI: 10.3390/cancers14163926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Currently, adaptive strategies require time- and resource-intensive manual structure corrections. This study compares different strategies: optimization without manual structure correction, adaptation with physician-drawn structures, and no adaptation. Strategies were compared for 16 patients with pancreas, liver, and head and neck (HN) cancer with 1-5 repeated images during treatment: 'reference adaptation', with structures drawn by a physician; 'single-DIR adaptation', using a single set of deformably propagated structures; 'multi-DIR adaptation', using robust planning with multiple deformed structure sets; 'conservative adaptation', using the intersection and union of all deformed structures; 'probabilistic adaptation', using the probability of a voxel belonging to the structure in the optimization weight; and 'no adaptation'. Plans were evaluated using reference structures and compared using a scoring system. The reference adaptation with physician-drawn structures performed best, and no adaptation performed the worst. For pancreas and liver patients, adaptation with a single DIR improved the plan quality over no adaptation. For HN patients, integrating structure uncertainties brought an additional benefit. If resources for manual structure corrections would prevent online adaptation, manual correction could be replaced by a fast 'plausibility check', and plans could be adapted with correction-free adaptation strategies. Including structure uncertainties in the optimization has the potential to make online adaptation more automatable.
Collapse
Affiliation(s)
- Lena Nenoff
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| | - Gregory Buti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Mislav Bobić
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Physics, ETH Zurich, 8092 Zurich, Switzerland
| | - Arthur Lalonde
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Konrad P. Nesteruk
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian Winey
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory Charles Sharp
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Atchar Sudhyadhom
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Harald Paganetti
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
32
|
Zhang Y, Alshaikhi J, Amos RA, Lowe M, Tan W, Bär E, Royle G. Improving workflow for adaptive proton therapy with predictive anatomical modelling: A proof of concept. Radiother Oncol 2022; 173:93-101. [PMID: 35667573 DOI: 10.1016/j.radonc.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To demonstrate predictive anatomical modelling for improving the clinical workflow of adaptive intensity-modulated proton therapy (IMPT) for head and neck cancer. METHODS 10 radiotherapy patients with nasopharyngeal cancer were included in this retrospective study. Each patient had a planning CT, weekly verification CTs during radiotherapy and predicted weekly CTs from our anatomical model. Predicted CTs were used to create predicted adaptive plans in advance with the aim of maintaining clinically acceptable dosimetry. Adaption was triggered when the increase in mean dose (Dmean) to the parotid glands exceeded 3 Gy(RBE). We compared the accumulated dose of two adaptive IMPT strategies: 1) Predicted plan adaption: One adaptive plan per patient was optimised on a predicted CT triggered by replan criteria. 2) Standard replan: One adaptive plan was created reactively in response to the triggering weekly CT. RESULTS Statistical analysis demonstrates that the accumulated dose differences between two adaptive strategies are not significant (p > 0.05) for CTVs and OARs. We observed no meaningful differences in D95 between the accumulated dose and the planned dose for the CTVs, with mean differences to the high-risk CTV of -1.20 %, -1.23 % and -1.25 % for no adaption, standard and predicted plan adaption, respectively. The accumulated parotid Dmean using predicted plan adaption is within 3 Gy(RBE) of the planned dose and 0.31 Gy(RBE) lower than the standard replan approach on average. CONCLUSION Prediction-based replanning could potentially enable adaptive therapy to be delivered without treatment gaps or sub-optimal fractions, as can occur during a standard replanning strategy, though the benefit of using predicted plan adaption over the standard replan was not shown to be statistically significant with respect to accumulated dose in this study. Nonetheless, a predictive replan approach can offer advantages in improving clinical workflow efficiency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom.
| | - Jailan Alshaikhi
- Saudi Proton Therapy Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Richard A Amos
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University, China
| | - Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; University College London Hospitals NHS Foundation Trust, United Kingdom
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| |
Collapse
|
33
|
Borderías-Villarroel E, Taasti V, Van Elmpt W, Teruel-Rivas S, Geets X, Sterpin E. Evaluation of the clinical value of automatic online dose restoration for adaptive proton therapy of head and neck cancer. Radiother Oncol 2022; 170:190-197. [PMID: 35346754 DOI: 10.1016/j.radonc.2022.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Intensity modulated proton therapy (IMPT) is highly sensitive to anatomical variations which can cause inadequate target coverage during treatment. This study compares not-adapted (NA) robust plans to two adaptive IMPT methods - a fully-offline adaptive (FOA) and a simplified automatic online adaptive strategy (dose restoration (DR)) to determine the benefit of DR, in head and neck cancer (HNC). MATERIAL/METHODS Robustly optimized clinical IMPT doses in planning-CTs (pCTs) were available for a cohort of 10 HNC patients. During robust re-optimization, DR used isodose contours, generated from the clinical dose on pCTs, and patient specific objectives to reproduce the clinical dose in every repeated-CT(rCT). For each rCT(n=50), NA, DR and FOA plans were robustly evaluated. RESULTS An improvement in DVH-metrics and robustness was seen for DR and FOA plans compared to NA plans. For NA plans, 74%(37/50) of rCTs did not fulfill the CTV coverage criteria (D98%>95%Dprescription). DR improved target coverage, target homogeneity and variability on critical risk organs such as the spinal cord. After DR, 52%(26/50) of rCTs met all clinical goals. Because of large anatomical changes and/or inaccurate patient repositioning, 48%(24/50) of rCTs still needed full offline adaptation to ensure an optimal treatment since dose restoration was not able to re-establish the initial plan quality. CONCLUSION Robust optimization together with fully-automatized DR avoided offline adaptation in 52% of the cases. Implementation of dose restoration in clinical routine could ensure treatment plan optimality while saving valuable human and material resources to radiotherapy departments.
Collapse
Affiliation(s)
- Elena Borderías-Villarroel
- Molecular Imaging, Radiotherapy and Oncology (MIRO), UCLouvain, Brussels, Belgium. Avenue Hippocrate 54, Bte B1.54.07, 1200 Brussels, (Belgium).
| | - Vicki Taasti
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, (Netherlands).
| | - Wouter Van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, (Netherlands).
| | - S Teruel-Rivas
- Molecular Imaging, Radiotherapy and Oncology (MIRO), UCLouvain, Brussels, Belgium. Avenue Hippocrate 54, Bte B1.54.07, 1200 Brussels, (Belgium)
| | - X Geets
- Molecular Imaging, Radiotherapy and Oncology (MIRO), UCLouvain, Brussels, Belgium. Avenue Hippocrate 54, Bte B1.54.07, 1200 Brussels, (Belgium); Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium. Avenue Hippocrate 10, 1200 Brussels, (Belgium).
| | - E Sterpin
- Molecular Imaging, Radiotherapy and Oncology (MIRO), UCLouvain, Brussels, Belgium. Avenue Hippocrate 54, Bte B1.54.07, 1200 Brussels, (Belgium); Department of Oncology, Laboratory of Experimental Radiotherapy, KULeuven, Herestraat 49, 3000 Leuven, (Belgium).
| |
Collapse
|
34
|
Hall WA, Paulson E, Li XA, Erickson B, Schultz C, Tree A, Awan M, Low DA, McDonald BA, Salzillo T, Glide-Hurst CK, Kishan AU, Fuller CD. Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. CA Cancer J Clin 2022; 72:34-56. [PMID: 34792808 PMCID: PMC8985054 DOI: 10.3322/caac.21707] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.
Collapse
MESH Headings
- History, 20th Century
- History, 21st Century
- Humans
- Magnetic Resonance Imaging, Interventional/history
- Magnetic Resonance Imaging, Interventional/instrumentation
- Magnetic Resonance Imaging, Interventional/methods
- Magnetic Resonance Imaging, Interventional/trends
- Neoplasms/diagnostic imaging
- Neoplasms/radiotherapy
- Particle Accelerators
- Radiation Oncology/history
- Radiation Oncology/instrumentation
- Radiation Oncology/methods
- Radiation Oncology/trends
- Radiotherapy Planning, Computer-Assisted/history
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/trends
Collapse
Affiliation(s)
- William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Tree
- The Royal Marsden National Health Service Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel A. Low
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Travis Salzillo
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Carri K. Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Yang B, Chang Y, Liang Y, Wang Z, Pei X, Xu X, Qiu J. A Comparison Study Between CNN-Based Deformed Planning CT and CycleGAN-Based Synthetic CT Methods for Improving iCBCT Image Quality. Front Oncol 2022; 12:896795. [PMID: 35707352 PMCID: PMC9189355 DOI: 10.3389/fonc.2022.896795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose The aim of this study is to compare two methods for improving the image quality of the Varian Halcyon cone-beam CT (iCBCT) system through the deformed planning CT (dpCT) based on the convolutional neural network (CNN) and the synthetic CT (sCT) generation based on the cycle-consistent generative adversarial network (CycleGAN). Methods A total of 190 paired pelvic CT and iCBCT image datasets were included in the study, out of which 150 were used for model training and the remaining 40 were used for model testing. For the registration network, we proposed a 3D multi-stage registration network (MSnet) to deform planning CT images to agree with iCBCT images, and the contours from CT images were propagated to the corresponding iCBCT images through a deformation matrix. The overlap between the deformed contours (dpCT) and the fixed contours (iCBCT) was calculated for purposes of evaluating the registration accuracy. For the sCT generation, we trained the 2D CycleGAN using the deformation-registered CT-iCBCT slicers and generated the sCT with corresponding iCBCT image data. Then, on sCT images, physicians re-delineated the contours that were compared with contours of manually delineated iCBCT images. The organs for contour comparison included the bladder, spinal cord, femoral head left, femoral head right, and bone marrow. The dice similarity coefficient (DSC) was used to evaluate the accuracy of registration and the accuracy of sCT generation. Results The DSC values of the registration and sCT generation were found to be 0.769 and 0.884 for the bladder (p < 0.05), 0.765 and 0.850 for the spinal cord (p < 0.05), 0.918 and 0.923 for the femoral head left (p > 0.05), 0.916 and 0.921 for the femoral head right (p > 0.05), and 0.878 and 0.916 for the bone marrow (p < 0.05), respectively. When the bladder volume difference in planning CT and iCBCT scans was more than double, the accuracy of sCT generation was significantly better than that of registration (DSC of bladder: 0.859 vs. 0.596, p < 0.05). Conclusion The registration and sCT generation could both improve the iCBCT image quality effectively, and the sCT generation could achieve higher accuracy when the difference in planning CT and iCBCT was large.
Collapse
Affiliation(s)
- Bo Yang
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yankui Chang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yongguang Liang
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Zhiqun Wang
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Xi Pei
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Technology Development Department, Anhui Wisdom Technology Co., Ltd., Hefei, China
| | - Xie George Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Department of Radiation Oncology, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Jie Qiu
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jie Qiu,
| |
Collapse
|
36
|
CT-on-Rails Versus In-Room CBCT for Online Daily Adaptive Proton Therapy of Head-and-Neck Cancers. Cancers (Basel) 2021; 13:cancers13235991. [PMID: 34885100 PMCID: PMC8656713 DOI: 10.3390/cancers13235991] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To compare the efficacy of CT-on-rails versus in-room CBCT for daily adaptive proton therapy. METHODS We analyzed a cohort of ten head-and-neck patients with daily CBCT and corresponding virtual CT images. The necessity of moving the patient after a CT scan is the most significant difference in the adaptation workflow, leading to an increased treatment execution uncertainty σ. It is a combination of the isocenter-matching σi and random patient movements induced by the couch motion σm. The former is assumed to never exceed 1 mm. For the latter, we studied three different scenarios with σm = 1, 2, and 3 mm. Accordingly, to mimic the adaptation workflow with CT-on-rails, we introduced random offsets after Monte-Carlo-based adaptation but before delivery of the adapted plan. RESULTS There were no significant differences in accumulated dose-volume histograms and dose distributions for σm = 1 and 2 mm. Offsets with σm = 3 mm resulted in underdosage to CTV and hot spots of considerable volume. CONCLUSION Since σm typically does not exceed 2 mm for in-room CT, there is no clinically significant dosimetric difference between the two modalities for online adaptive therapy of head-and-neck patients. Therefore, in-room CT-on-rails can be considered a good alternative to CBCT for adaptive proton therapy.
Collapse
|
37
|
Jagt TZ, Breedveld S, Hoogeman MS. Evaluation of alternative parameter settings for dose restoration and full plan adaptation in IMPT for prostate cancer. Phys Med 2021; 92:15-23. [PMID: 34826710 DOI: 10.1016/j.ejmp.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/PURPOSE Intensity-modulated proton therapy is highly sensitive to anatomical variations. A dose restoration method and a full plan adaptation method have been developed earlier, both requiring several parameter settings. This study evaluates the validity of the previously selected settings by systematically comparing them to alternatives. MATERIALS/METHODS The dose restoration method takes a prior plan and uses an energy-adaptation followed by a spot-intensity re-optimization to restore the plan to its initial state. The full adaptation method uses an energy-adaptation followed by the addition of new spots and a spot-intensity optimization to fit the new anatomy. We varied: 1) The margins and robustness settings of the prior plan, 2) the spot-addition sample size, i.e. the number of added spots, 3) the spot-addition stopping criterion, and 4) the spot-intensity optimization approach. The last three were evaluated only for the full plan adaptation. Evaluations were done on 88 CT scans of 11 prostate cancer patients. Dose was prescribed as 55 Gy(RBE) to the lymph nodes and seminal vesicles with a boost to 74 Gy(RBE) to the prostate. RESULTS For the dose restoration method, changing the applied CTV-to-PTV margins and plan robustness in the prior plans yielded insufficient target coverage or increased OAR doses. For the full plan adaptation, more spot-addition iterations and using a different optimization approach resulted in lower OAR doses compared to the default settings while maintaining target coverage. However, the calculation times increased by up to 20 times, making these variations infeasible for online-adaptation. CONCLUSION We recommend maintaining the default setting for the dose restoration approach. For the full plan adaptation we recommend to focus on fine-tuning the optimization-parameters, and apart from this using the default settings.
Collapse
Affiliation(s)
- Thyrza Z Jagt
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands.
| |
Collapse
|
38
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Nenoff L, Matter M, Charmillot M, Krier S, Uher K, Weber DC, Lomax AJ, Albertini F. Experimental validation of daily adaptive proton therapy. Phys Med Biol 2021; 66. [PMID: 34587589 DOI: 10.1088/1361-6560/ac2b84] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Anatomical changes during proton therapy require rapid treatment plan adaption to mitigate the associated dosimetric impact. This in turn requires a highly efficient workflow that minimizes the time between imaging and delivery. At the Paul Scherrer Institute, we have developed an online adaptive workflow, which is specifically designed for treatments in the skull-base/cranium, with the focus set on simplicity and minimizing changes to the conventional workflow. The dosimetric and timing performance of this daily adaptive proton therapy (DAPT) workflow has been experimentally investigated using an in-house developed DAPT software and specifically developed anthropomorphic phantom. After a standard treatment preparation, which includes the generation of a template plan, the treatment can then be adapted each day, based on daily imaging acquired on an in-room CT. The template structures are then rigidly propagated to this CT and the daily plan is fully re-optimized using the same field arrangement, DVH constraints and optimization settings of the template plan. After a dedicated plan QA, the daily plan is delivered. To minimize the time between imaging and delivery, clinically integrated software for efficient execution of all online adaption steps, as well as tools for comprehensive and automated QA checks, have been developed. Film measurements of an end-to-end validation of a multi-fraction DAPT treatment showed high agreement to the calculated doses. Gamma pass rates with a 3%/3 mm criteria were >92% when comparing the measured dose to the template plan. Additionally, a gamma pass rate >99% was found comparing measurements to the Monte Carlo dose of the daily plans reconstructed from the logfile, accumulated over the delivered fractions. With this, we experimentally demonstrate that the described adaptive workflow can be delivered accurately in a timescale similar to a standard delivery.
Collapse
Affiliation(s)
- Lena Nenoff
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Michael Matter
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | | - Serge Krier
- Department of Physics, ETH Zurich, Switzerland
| | - Klara Uher
- Department of Physics, ETH Zurich, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Antony John Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | |
Collapse
|
40
|
Lalonde A, Bobić M, Winey B, Verburg J, Sharp GC, Paganetti H. Anatomic changes in head and neck intensity-modulated proton therapy: Comparison between robust optimization and online adaptation. Radiother Oncol 2021; 159:39-47. [PMID: 33741469 PMCID: PMC8205952 DOI: 10.1016/j.radonc.2021.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE Setup variations and anatomical changes can severely affect the quality of head and neck intensity-modulated proton therapy (IMPT) treatments. The impact of these changes can be alleviated by increasing the plan's robustness a priori, or by adapting the plan online. This work compares these approaches in the context of head and neck IMPT. MATERIALS/METHODS A representative cohort of 10 head and neck squamous cell carcinoma (HNSCC) patients with daily cone-beam computed tomography (CBCT) was evaluated. For each patient, three IMPT plans were created: 1- a classical robust optimization (cRO) plan optimized on the planning CT, 2- an anatomical robust optimization (aRO) plan additionally including the two first daily CBCTs and 3- a plan optimized without robustness constraints, but online-adapted (OA) daily, using a constrained spot intensity re-optimization technique only. RESULTS The cumulative dose following OA fulfilled the clinical objective of both the high-risk and low-risk clinical target volumes (CTV) coverage in all 10 patients, compared to 8 for aRO and 4 for cRO. aRO did not significantly increase the dose to most organs at risk compared to cRO, although the integral dose was higher. OA significantly reduced the integral dose to healthy tissues compared to both robust methods, while providing equivalent or superior target coverage. CONCLUSION Using a simple spot intensity re-optimization, daily OA can achieve superior target coverage and lower dose to organs at risk than robust optimization methods.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA.
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA; ETH Zürich, Zürich, Switzerland
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Joost Verburg
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| |
Collapse
|