1
|
Stolen E, Fullarton R, Hein R, Conner RL, Jacobsohn LG, Collins-Fekete CA, Beddar S, Akgun U, Robertson D. High-Density Glass Scintillators for Proton Radiography-Relative Luminosity, Proton Response, and Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2024; 24:2137. [PMID: 38610351 PMCID: PMC11014246 DOI: 10.3390/s24072137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Proton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several new scintillators, activated with europium or terbium, with proton response measurements and Monte Carlo simulations, characterizing relative luminosity, ionization quenching, and proton radiograph spatial resolution. We applied a correction based on Birks's analytical model for ionization quenching. The data demonstrate increased relative luminosity with increased activation element concentration, and higher relative luminosity for samples activated with europium. An increased glass density enables more compact detector geometries and higher spatial resolution. These findings suggest that a tungsten and gadolinium oxide-based glass activated with 4% europium is an ideal scintillator for testing in a full-size proton radiography detector.
Collapse
Affiliation(s)
- Ethan Stolen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Ryan Fullarton
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; (R.F.); (C.-A.C.-F.)
| | - Rain Hein
- Department of Physics, Coe College, Cedar Rapids, IA 52402, USA; (R.H.); (U.A.)
| | - Robin L. Conner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; (R.L.C.); (L.G.J.)
| | - Luiz G. Jacobsohn
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; (R.L.C.); (L.G.J.)
| | - Charles-Antoine Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; (R.F.); (C.-A.C.-F.)
| | - Sam Beddar
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ugur Akgun
- Department of Physics, Coe College, Cedar Rapids, IA 52402, USA; (R.H.); (U.A.)
| | - Daniel Robertson
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA;
| |
Collapse
|
2
|
Simard M, Robertson DG, Fullarton R, Royle G, Beddar S, Collins-Fekete CA. Integrated-mode proton radiography with 2D lateral projections. Phys Med Biol 2024; 69:054001. [PMID: 38241716 DOI: 10.1088/1361-6560/ad209d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Integrated-mode proton radiography leading to water equivalent thickness (WET) maps is an avenue of interest for motion management, patient positioning, andin vivorange verification. Radiographs can be obtained using a pencil beam scanning setup with a large 3D monolithic scintillator coupled with optical cameras. Established reconstruction methods either (1) involve a camera at the distal end of the scintillator, or (2) use a lateral view camera as a range telescope. Both approaches lead to limited image quality. The purpose of this work is to propose a third, novel reconstruction framework that exploits the 2D information provided by two lateral view cameras, to improve image quality achievable using lateral views. The three methods are first compared in a simulated Geant4 Monte Carlo framework using an extended cardiac torso (XCAT) phantom and a slanted edge. The proposed method with 2D lateral views is also compared with the range telescope approach using experimental data acquired with a plastic volumetric scintillator. Scanned phantoms include a Las Vegas (contrast), 9 tissue-substitute inserts (WET accuracy), and a paediatric head phantom. Resolution increases from 0.24 (distal) to 0.33 lp mm-1(proposed method) on the simulated slanted edge phantom, and the mean absolute error on WET maps of the XCAT phantom is reduced from 3.4 to 2.7 mm with the same methods. Experimental data from the proposed 2D lateral views indicate a 36% increase in contrast relative to the range telescope method. High WET accuracy is obtained, with a mean absolute error of 0.4 mm over 9 inserts. Results are presented for various pencil beam spacing ranging from 2 to 6 mm. This work illustrates that high quality proton radiographs can be obtained with clinical beam settings and the proposed reconstruction framework with 2D lateral views, with potential applications in adaptive proton therapy.
Collapse
Affiliation(s)
- Mikaël Simard
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel G Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, 5881 E Mayo Blvd, Phoenix, AZ, United States of America
| | - Ryan Fullarton
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sam Beddar
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | | |
Collapse
|
3
|
Metzner M, Zhevachevska D, Schlechter A, Kehrein F, Schlecker J, Murillo C, Brons S, Jäkel O, Martišíková M, Gehrke T. Energy painting: helium-beam radiography with thin detectors and multiple beam energies. Phys Med Biol 2024; 69:055002. [PMID: 38295403 DOI: 10.1088/1361-6560/ad247e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents ourenergy paintingmethod, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant water-equivalent thickness (WET) ranges.Approach.A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to WET. They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions.Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of 1.82(5) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %.Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation.
Collapse
Affiliation(s)
- Margareta Metzner
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Daria Zhevachevska
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Heidelberg University, Medical Faculty Mannheim, Heidelberg, Germany
| | - Annika Schlechter
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Florian Kehrein
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Julian Schlecker
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology/Radiobiology, Germany
| | - Carlos Murillo
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiology, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Radiation Oncology - Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Radiation Oncology - Heidelberg University Hospital, Heidelberg, Germany
| | - Mária Martišíková
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
| | - Tim Gehrke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Darne CD, Robertson DG, Alsanea F, Collins-Fekete CA, Beddar S. A novel proton-integrating radiography system design using a monolithic scintillator detector: experimental studies. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2022; 1027:166077. [PMID: 35221402 PMCID: PMC8872121 DOI: 10.1016/j.nima.2021.166077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on proton-based imaging systems aims to improve treatment planning, internal anatomy visualization, and patient alignment for proton radiotherapy. The purpose of this study was to demonstrate a new proton radiography system design consisting of a monolithic plastic scintillator volume and two optical cameras for use with scanning proton pencil beams. Unlike the thin scintillating plates currently used for proton radiography, the plastic scintillator volume (20 × 20 × 20 cm3) captures a wider distribution of proton beam energy depositions and avoids proton-beam modulation. The proton imaging system's characteristics were tested using image uniformity (2.6% over a 5 × 5 cm2 area), stability (0.37%), and linearity (R2 = 1) studies. We used the light distribution produced within the plastic scintillator to generate proton radiographs via two different approaches: (a) integrating light by using a camera placed along the beam axis, and (b) capturing changes to the proton Bragg peak positions with a camera placed perpendicularly to the beam axis. The latter method was used to plot and evaluate relative shifts in percentage depth light (PDL) profiles of proton beams with and without a phantom in the beam path. A curvelet minimization algorithm used differences in PDL profiles to reconstruct and refine the phantom water-equivalent thickness (WET) map. Gammex phantoms were used to compare the proton radiographs generated by these two methods. The relative accuracies in calculating WET of the phantoms using the calibration-based beam-integration (and the PDL) methods were -0.18 ± 0.35% (-0.29 ± 3.11%), -0.11 ± 0.51% (-0.15 ± 2.64%), -2.94 ± 1.20% (-0.75 ± 6.11%), and -1.65 ± 0.35% (0.36 ± 3.93%) for solid water, adipose, cortical bone, and PMMA, respectively. Further exploration of this unique multicamera-based imaging system is warranted and could lead to clinical applications that improve treatment planning and patient alignment for proton radiotherapy.
Collapse
Affiliation(s)
- Chinmay D Darne
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel G Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|