1
|
Paul K, Dorsch S, Elter A, Beyer C, Naumann J, Hansmann T, Feldmeier E, Haberer T, Karger CP, Debus J, Klüter S. Online MR-guided proton and ion beam radiotherapy: investigation of image quality. Phys Med Biol 2024; 69:185013. [PMID: 39191287 DOI: 10.1088/1361-6560/ad7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Objective.Magnetic resonance (MR) images free of artefacts are of pivotal importance for MR-guided ion radiotherapy. This study investigates MR image quality for simultaneous irradiation in an experimental setup using phantom imaging as well asin-vivoimaging. Observed artefacts are described within the study and their cause is investigated with the goal to find conclusions and solutions for potential future hybrid devices.Approach.An open MR scanner with a field strength of 0.25 T has been installed in front of an ion beamline. Simultaneous magnetic resonance imaging and irradiation using raster scanning were performed to analyze image quality in dedicated phantoms. Magnetic field measurements were performed to assist the explanation of observed artifacts. In addition,in-vivoimages were acquired by operating the magnets for beam scanning without transporting a beam.Main Results.The additional frequency component within the isocenter caused by the fringe field of the horizontal beam scanning magnet correlates with the amplitude and frequency of the scanning magnet steering and can cause ghosting artifacts in the images. These are amplified with high currents and fast operating of the scanning magnet. Applying a real-time capable pulse sequencein-vivorevealed no ghosting artifacts despite a continuously changing current pattern and a clinical treatment plan activation scheme, suggesting that the use of fast imaging is beneficial for the aim of creating high quality in-beam MR images. This result suggests, that the influence of the scanning magnets on the MR acquisition might be of negligible importance and does not need further measures like extensive magnetic shielding of the scanning magnets.Significance.Our study delimited artefacts observed in MR images acquired during simultaneous raster scanning ion beam irradiation. The application of a fast pulse sequence showed no image artefacts and holds the potential that online MR imaging in future hybrid devices might be feasible.
Collapse
Affiliation(s)
- K Paul
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - A Elter
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Beyer
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - J Naumann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - T Hansmann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - E Feldmeier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - T Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - C P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Core Center Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - S Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
2
|
Dorsch S, Paul K, Beyer C, Karger CP, Jäkel O, Debus J, Klüter S. Quality assurance and temporal stability of a 1.5 T MRI scanner for MR-guided Photon and Particle Therapy. Z Med Phys 2023:S0939-3889(23)00046-6. [PMID: 37150727 DOI: 10.1016/j.zemedi.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE To describe performance measurements, adaptations and time stability over 20 months of a diagnostic MR scanner for integration into MR-guided photon and particle radiotherapy. MATERIAL AND METHODS For realization of MR-guided photon and particle therapy (MRgRT/MRgPT), a 1.5 T MR scanner was installed at the Heidelberg Ion Beam Therapy Center. To integrate MRI into the treatment process, a flat tabletop and dedicated coil holders for flex coils were used, which prevent deformation of the patient external contour and allow for the use of immobilization tools for reproducible positioning. The signal-to-noise ratio (SNR) was compared for the diagnostic and therapy-specific setup using the flat couch top and flexible coils for the a) head & neck and b) abdominal region as well as for different bandwidths and clinical pulse sequences. Additionally, a quality assurance (QA) protocol with monthly measurements of the ACR phantom and measurement of geometric distortions for a large field-of-view (FOV) was implemented to assess the imaging quality parameters of the device over the course of 20 months. RESULTS The SNR measurements showed a decreased SNR for the RT-specific as compared to the diagnostic setup of (a) 26% to 34% and (b) 11% to 33%. No significant bandwidth dependency for this ratio was found. The longitudinal assessment of the image quality parameters with the ACR and distortion phantom confirmed the long-term stability of the MRI device. CONCLUSION A diagnostic MRI was commissioned for use in MR-guided particle therapy. Using a radiotherapy specific setup, a high geometric accuracy and signal homogeneity was obtained after some adaptions and the measured parameters were shown to be stable over a period of 20 months.
Collapse
Affiliation(s)
- Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Katharina Paul
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Cedric Beyer
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Core center Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Burigo LN, Oborn BM. Integrated MRI-guided proton therapy planning: accounting for the full MRI field in a perpendicular system. Med Phys 2021; 49:1853-1873. [PMID: 34908170 DOI: 10.1002/mp.15398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To present a first study on the treatment planning feasibility in perpendicular field MRI-integrated proton therapy which considers the full transport of protons from the pencil beam scanning assembly to the patient inside the MRI scanner. METHODS A generic proton pencil beam scanning (PBS) gantry was modelled as being integrated with a realistic split-bore MRI system in the perpendicular orientation. MRI field strengths were modeled as 0.5 T, 1 T, and 1.5 T. The PBS beam delivery and dose calculation was modeled using the TOPAS Monte Carlo toolkit coupled with matRad as the optimizer engine. A water phantom, liver and prostate plans were evaluated and optimized in the presence of the full MRI field distribution. A simple combination of gantry angle offset and small PBS nozzle skew was used to direct the proton beams along a path that closely follows the reference planning scenario, i.e. without magnetic field. RESULTS All planning metrics could be successfully achieved with the inclusion of gantry angle offsets in the range of 8°-29° when coupled with a PBS nozzle skew of 1.6°-4.4°. These two hardware based corrections were selected to minimize the average Euclidean distance (AED) in the beam path enabling the proton beams to travel inside the patient in a path that is close to the original path (AED smaller than 3 mm at 1.5 T). Final dose optimization, performed through further changes in the pencil beam scanning delivery, was then shown to be feasible for our selection of plans studied yielding comparable plan quality metrics to reference conditions. CONCLUSIONS For the first time, we have shown a robust method to account for the full proton beam deflection in a perpendicular orientation MRI-integrated proton therapy. These results support the ongoing development of the current prototype systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lucas N Burigo
- German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, 69120, Germany
| | - Bradley M Oborn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, 01309, Germany.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500, Australia.,Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia
| |
Collapse
|