1
|
Zeng Y, Li H, Chang Y, Han Y, Liu H, Pang B, Han J, Hu B, Cheng J, Zhang S, Yang K, Quan H, Yang Z. In vivo EPID-based daily treatment error identification for volumetric-modulated arc therapy in head and neck cancers with a hierarchical convolutional neural network: a feasibility study. Phys Eng Sci Med 2024; 47:907-917. [PMID: 38647634 DOI: 10.1007/s13246-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
We proposed a deep learning approach to classify various error types in daily VMAT treatment of head and neck cancer patients based on EPID dosimetry, which could provide additional information to support clinical decisions for adaptive planning. 146 arcs from 42 head and neck patients were analyzed. Anatomical changes and setup errors were simulated in 17,820 EPID images of 99 arcs obtained from 30 patients using in-house software for model training, validation, and testing. Subsequently, 141 clinical EPID images from 47 arcs belonging to the remaining 12 patients were utilized for clinical testing. The hierarchical convolutional neural network (HCNN) model was trained to classify error types and magnitudes using EPID dose difference maps. Gamma analysis with 3%/2 mm (dose difference/distance to agreement) criteria was also performed. The F1 score, a combination of precision and recall, was utilized to evaluate the performance of the HCNN model and gamma analysis. The adaptive fractioned doses were calculated to verify the HCNN classification results. For error type identification, the overall F1 score of the HCNN model was 0.99 and 0.91 for primary type and subtype identification, respectively. For error magnitude identification, the overall F1 score in the simulation dataset was 0.96 and 0.70 for the HCNN model and gamma analysis, respectively; while the overall F1 score in the clinical dataset was 0.79 and 0.20 for the HCNN model and gamma analysis, respectively. The HCNN model-based EPID dosimetry can identify changes in patient transmission doses and distinguish the treatment error category, which could potentially provide information for head and neck cancer treatment adaption.
Collapse
Affiliation(s)
- Yiling Zeng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Han
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongyuan Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Pang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun Han
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junping Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Quan
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Martins JC, Maier J, Gianoli C, Neppl S, Dedes G, Alhazmi A, Veloza S, Reiner M, Belka C, Kachelrieß M, Parodi K. Towards real-time EPID-based 3D in vivo dosimetry for IMRT with Deep Neural Networks: A feasibility study. Phys Med 2023; 114:103148. [PMID: 37801811 DOI: 10.1016/j.ejmp.2023.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans (gantry at 0∘). FODs were produced as backprojections from the EPID signals. 581 ADD-FOD sets were produced and divided into training and test sets. An additional dataset simulated with gantry at 90∘ (lateral set) was used for evaluating the performance of the DDE at different beam directions. The quality of the FODs and DDE-predicted dose distributions (DDEP) with respect to ADDs, from the test and lateral sets, was evaluated with gamma analysis (3%,2 mm). The passing rates between FODs and ADDs were as low as 46%, while for DDEPs the passing rates were above 97% for the test set. Meaningful improvements were also observed for the lateral set. The high passing rates for DDEPs indicate that the DDE is able to convert FODs into ADDs. Moreover, the trained DDE predicts the dose inside a patient CT within 0.6 s/subfield (GPU), in contrast to 14 h needed for MC (CPU-cluster). 3D in vivo dose distributions due to clinical patient irradiation can be obtained within seconds, with MC-like accuracy, potentially paving the way towards real-time EPID-based in vivo dosimetry.
Collapse
Affiliation(s)
- Juliana Cristina Martins
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Joscha Maier
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Sebastian Neppl
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Abdulaziz Alhazmi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Stella Veloza
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany; Heidelberg University, Grabengasse 1, Heidelberg, 69117, Germany.
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| |
Collapse
|
3
|
Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol 2022; 86:160-171. [PMID: 35998809 DOI: 10.1016/j.semcancer.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Radiotherapy is a discipline closely integrated with computer science. Artificial intelligence (AI) has developed rapidly over the past few years. With the explosive growth of medical big data, AI promises to revolutionize the field of radiotherapy through highly automated workflow, enhanced quality assurance, improved regional balances of expert experiences, and individualized treatment guided by multi-omics. In addition to independent researchers, the increasing number of large databases, biobanks, and open challenges significantly facilitated AI studies on radiation oncology. This article reviews the latest research, clinical applications, and challenges of AI in each part of radiotherapy including image processing, contouring, planning, quality assurance, motion management, and outcome prediction. By summarizing cutting-edge findings and challenges, we aim to inspire researchers to explore more future possibilities and accelerate the arrival of AI radiotherapy.
Collapse
Affiliation(s)
- Guangqi Li
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xin Wu
- Head & Neck Oncology ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|