1
|
Vilches-Freixas G, Bosmans G, Douralis A, Martens J, Meijers A, Rinaldi I, Salvo K, Thomas R, Palmans H, Lourenço A. Experimental comparison of cylindrical and plane parallel ionization chambers for reference dosimetry in continuous and pulsed scanned proton beams. Phys Med Biol 2024; 69:105021. [PMID: 38640918 DOI: 10.1088/1361-6560/ad40f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.Approach. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cm3dose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality (kQ) correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.Main results. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedkQvalues. The spread among the chambers is reduced with the newlykQvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.Significance. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thekQvalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowkQvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,kQvalues measured using calorimetry are needed.
Collapse
Affiliation(s)
- Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Geert Bosmans
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Jonathan Martens
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arturs Meijers
- Paul Scherrer Institut, Villigen, Switzerland (current address), University Medical Centre Groningen, Groningen, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Salvo
- UZ Leuven, Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium
| | - Russell Thomas
- National Physical Laboratory, Teddington, United Kingdom
- University College London, London, United Kingdom
| | - Hugo Palmans
- National Physical Laboratory, Teddington, United Kingdom
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Lourenço
- National Physical Laboratory, Teddington, United Kingdom
- University College London, London, United Kingdom
| |
Collapse
|
2
|
Wulff J, Paul A, Bäcker CM, Baumann KS, Esser JN, Koska B, Timmermann B, Verbeek NG, Bäumer C. Consistency of Faraday cup and ionization chamber dosimetry of proton fields and the role of nuclear interactions. Med Phys 2024; 51:2277-2292. [PMID: 37991110 DOI: 10.1002/mp.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND A Faraday cup (FC) facilitates a quite clean measurement of the proton fluence emerging from clinical spot-scanning nozzles with narrow pencil-beams. The utilization of FCs appears to be an attractive option for high dose rate delivery modes and the source models of Monte-Carlo (MC) dose engines. However, previous studies revealed discrepancies of 3%-6% between reference dosimetry with ionization chambers (ICs) and FC-based dosimetry. This has prevented the widespread use of FCs for dosimetry in proton therapy. PURPOSE The current study aims at bridging the gap between FC dosimetry and IC dosimetry of proton fields delivered with spot-scanning treatment heads. Particularly, a novel method to evaluate FC measurements is introduced. METHODS A consistency check is formulated, which makes use of the energy balance and the reciprocity theorem. The measurement data comprise central-axis depth distributions of the absorbed dose of quasi-monochromatic fields with a width of about 28.5 cm and FC measurements of the reciprocal fields with a single spot. These data are complemented by a look-up of energy-range tables, the average Q-value of transmutations, and the escape energy carried away by neutrons and photons. The latter data are computed by MC simulations, which in turn are validated with measurements of the distal dose tail and neutron out-of-field doses. For comparison, the conventional approach of FC evaluation is performed, which computes absorbed dose from the product of fluence and stopping power. The results from the FC measurements are compared with the standard dosimetry protocols and improved reference dosimetry methods. RESULTS The deviation between the conventional FC-based dosimetry and the IC-based one according to standard dosimetry protocols was -4.7 ( ± $\pm$ 3.3)% for a 100 MeV field and -3.6 ( ± $\pm$ 3.5)% for 200 MeV, thereby agreeing within the reported uncertainties. The deviations could be reduced to -4.0 ( ± $\pm$ 2.9)% and -3.0 ( ± $\pm$ 3.1)% by adopting state-of-the-art reference dosimetry methods. The alternative approach using the energy balance gave deviations of only -1.9% (100 MeV) and -2.6% (200 MeV) using state-of-the-art dosimetry. The standard uncertainty of this novel approach was estimated to be about 2%. CONCLUSIONS An alternative concept has been established to determine the absorbed dose of monoenergetic proton fields with an FC. It eliminates the strong dependence of the conventional FC-based approach on the MC simulation of the stopping-power and of the secondary ions, which according to the study at hand is the major contributor to the underestimation of the absorbed dose. Some contributions to the uncertainty of the novel approach could potentially be reduced in future studies. This would allow for accurate consistency tests of conventional dosimetry procedures.
Collapse
Affiliation(s)
- Jörg Wulff
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
| | - Anne Paul
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
- Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claus Maximilian Bäcker
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
| | - Kilian-Simon Baumann
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Johannes Niklas Esser
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
| | - Benjamin Koska
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
- Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Nico Gerd Verbeek
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen, Essen, Germany
- University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
- Department of Physics, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
3
|
Kugel F, Wulff J, Bäumer C, Janson M, Kretschmer J, Brodbek L, Behrends C, Verbeek N, Looe HK, Poppe B, Timmermann B. Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine. Z Med Phys 2023; 33:529-541. [PMID: 36577626 PMCID: PMC10751706 DOI: 10.1016/j.zemedi.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called "spray". Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray. METHODS The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS. RESULTS SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model. CONCLUSION Properly representing nozzle spray in RayStation's MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.
Collapse
Affiliation(s)
- Fabian Kugel
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; Faculty of Physics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | | | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; EBG MedAustron GmbH, Marie Curie-Straße 5, A-2700, Wiener Neustadt, Austria
| | - Carina Behrends
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
4
|
Horst F. Calorimetry as a tool to improve the dosimetric accuracy in novel radiotherapy modalities. Phys Imaging Radiat Oncol 2023; 28:100516. [PMID: 38026086 PMCID: PMC10679516 DOI: 10.1016/j.phro.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Felix Horst
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| |
Collapse
|
5
|
Urago Y, Sakama M, Sakata D, Fukuda S, Katayose T, Chang W. Monte Carlo-calculated beam quality and perturbation correction factors validated against experiments for Farmer and Markus type ionization chambers in therapeutic carbon-ion beams. Phys Med Biol 2023; 68:185013. [PMID: 37579752 DOI: 10.1088/1361-6560/acf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Objective. In current dosimetry protocols, the estimated uncertainty of the measured absorbed dose to waterDwin carbon-ion beams is approximately 3%. This large uncertainty is mainly contributed by the standard uncertainty of the beam quality correction factorkQ. In this study, thekQvalues in four cylindrical chambers and two plane-parallel chambers were calculated using Monte Carlo (MC) simulations in the plateau region. The chamber-specific perturbation correction factorPof each chamber was also determined through MC simulations.Approach.kQfor each chamber was calculated using MC code Geant4. The simulatedkQratios in subjected chambers and reference chambers were validated through comparisons against our measured values. In the measurements in Heavy-Ion Medical Accelerator in Chiba,kQratios were obtained fromDwvalues of60Co, 290- and 400 MeV u-1carbon-ion beams that were measured with the subjected ionization chamber and the reference chamber. In the simulations,fQ(the product of the water-to-air stopping power ratio andP) was acquired fromDwand the absorbed dose to air calculated in the sensitive volume of each chamber.kQvalues were then calculated from the simulatedfQand the literature-extractedWairand compared with previous publications.Main results. The calculatedkQratios in the subjected chambers to the reference chamber agreed well with the measuredkQratios. ThekQuncertainty was reduced from the current recommendation of approximately 3% to 1.7%. ThePvalues were close to unity in the cylindrical chambers and nearly 1% above unity in the plane-parallel chambers.Significance. ThekQvalues of carbon-ion beams were accurately calculated in MC simulations and thekQratios were validated through ionization chamber measurements. The results indicate a need for updating the current recommendations, which assume a constantPof unity in carbon-ion beams, to recommendations that consider chamber-induced differences.
Collapse
Affiliation(s)
- Yuka Urago
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Sakama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Shigekazu Fukuda
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Weishan Chang
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
6
|
Palmans H, Lourenço A, Medin J, Vatnitsky S, Andreo P. Current best estimates of beam quality correction factors for reference dosimetry of clinical proton beams. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To review the currently available data on beam quality correction factors,
k
Q
,
for ionization chambers in clinical proton beams and derive their current best estimates for the updated recommendations of the IAEA TRS-398 Code of Practice. Approach. The reviewed data come from 20 publications from which
k
Q
values can be derived either directly from calorimeter measurements, indirectly from comparison with other chambers or from Monte Carlo calculated overall chamber factors,
f
Q
.
For cylindrical ionization chambers, a distinction is made between data obtained in the centre of a spread-out Bragg peak and those obtained in the plateau region of single-energy fields. For the latter, the effect of depth dose gradients has to be considered. To this end an empirical model for previously published displacement correction factors for single-layer scanned beams was established, while for unmodulated scattered beams experimental data were used. From all the data, chamber factors,
f
Q
,
and chamber perturbation correction factors,
p
Q
,
were then derived and analysed. Main results. The analysis showed that except for the beam quality dependence of the water-to-air mass stopping power ratio and, for cylindrical ionization chambers in unmodulated beams, of the displacement correction factor, there is no remaining beam quality dependence of the chamber perturbation correction factors
p
Q
.
Based on this approach, average values of the beam quality independent part of the perturbation factors were derived to calculate
k
Q
values consistent with the data in the literature. Significance. The resulting data from this analysis are current best estimates of
k
Q
values for modulated scattered beams and single-layer scanned beams used in proton therapy. Based on this, a single set of harmonized values is derived to be recommended in the update of IAEA TRS-398.
Collapse
|
7
|
Vedelago J, Karger CP, Jäkel O. A review on reference dosimetry in radiation therapy with proton and light ion beams: status and impact of new developments. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|