1
|
Dauba A, Spitzlei C, Bautista KJB, Jourdain L, Selingue E, VanTreeck KE, Mattern JA, Denis C, Ouldali M, Arteni AA, Truillet C, Larrat B, Tsuruta J, Durham PG, Papadopoulou V, Dayton PA, Tsapis N, Novell A. Low-boiling-point perfluorocarbon nanodroplets for adaptable ultrasound-induced blood-brain barrier opening. J Control Release 2024; 376:441-456. [PMID: 39419451 DOI: 10.1016/j.jconrel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Low-boiling point perfluorocarbon nanodroplets (NDs) are valued as effective sonosensitive agents, encapsulating a liquid perfluorocarbon that would instantaneously vaporize at body temperature without the NDs shell. Those NDs have been explored for both therapeutic and diagnostic purposes. Here, phospholipid-shelled nanodroplets containing octafluoropropane (C3F8) or decafluorobutane (C4F10) formed by condensation of microbubbles were thoroughly characterized before blood-brain (BBB) permeabilization. Transmission electron microscopy (TEM) and cryo-TEM were employed to confirm droplet formation while providing high-resolution insights into the droplet surface and lipid arrangement assessed from electron density observation after condensation. The vaporization threshold of NDs was determined with a high-speed camera, and the frequency signal emitted by the freshly vaporized bubbles was analyzed using cavitation detection. C3F8 NDs exhibited vaporization at 0.3 MPa (f0 = 1.5 MHz, 50 cycles), and emitted signals at 2 f0 and 1.5 f0 from 0.45 MPa onwards (f0 = 1.5 MHz, 50 cycles), while broadband noise was measured starting from 0.55 MPa. NDs with the higher boiling point C4F10 vaporized at 1.15 MPa and emitted signals at 2 f0 from 0.65 MPa and 1.5 f0 from 0.9 MPa, while broadband noise was detected starting from 0.95 MPa. Both ND formulations were used to permeabilize the BBB in healthy mice using tailored ultrasound sequences, allowing for the identification of optimal applications for each NDs type. C3F8 NDs proved suitable and safe for permeabilizing a large area, potentially the entire brain, at low acoustic pressure. Meanwhile, C4F10 droplets facilitated very localized (400 μm isotropic) permeabilization at higher pressure. This study prompts a closer examination of the structural rearrangements occurring during the condensation of microbubbles into NDs and highlights the potential to tailor solutions for different brain pathologies by choosing the composition of the NDs and adjusting the ultrasound sequence.
Collapse
Affiliation(s)
- Ambre Dauba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Claire Spitzlei
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Laurène Jourdain
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - Kelly E VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob A Mattern
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - James Tsuruta
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Phillip G Durham
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France.
| |
Collapse
|
2
|
Ishak O, Breton E, Cabras P, Dumont E, Mondou P, Novell A, Larrat B, Vappou J. Magnetic resonance cavitation imaging for the monitoring of ultrasound therapies. Phys Med Biol 2024; 69:215018. [PMID: 39378906 DOI: 10.1088/1361-6560/ad84b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Objective.Focused ultrasound (FUS) is a promising non-invasive therapeutic approach that can be used to generate thermal and non-thermal bioeffects. Several non-thermal FUS therapies rely on FUS-induced oscillations of microbubbles (MBs), a phenomenon referred to as cavitation. Cavitation monitoring in real time is essential to ensure both the efficacy and the safety of FUS therapies. This study aims to introduce a new magnetic resonance (MR) method for cavitation monitoring during FUS therapies.Approach.By finely synchronizing the FUS pulse with an accelerated turbo spin-echo MR sequence, the cavitation effect could be quantitatively estimated on the acquired images at 1-Hz refresh rate. The proposed method was assessed in vitro in a water bath. A series of FUS pulses were generated on a silicone tube filled with MBs at different acoustic pressures (0.07-2.07 MPa) and pulse durations (20-2000μs). MR images and passive cavitation detection (PCD) signals were simultaneously acquired for each FUS pulse.Main results.Inertial cavitation was found to induce a quantitatively interpretable signal loss on the MR image. The transition from stable to inertial cavitation was identified on MR cavitation maps with high repeatability. These results were found to be in good agreement with PCD measurements in terms of pressure thresholds between stable and inertial cavitation. MR cavitation imaging was shown to be sensitive to short and even ultrashort FUS pulses, from 2 ms down to 20μs. The presented theoretical model suggests that the signal loss in MR cavitation imaging relies on susceptibility changes related to the diameter of the oscillating MBs.Significance.The proposed MR cavitation imaging method can both locate and characterize cavitation activity. It has therefore the potential to improve the efficacy and safety of FUS therapies, particularly for localized drug delivery applications.
Collapse
Affiliation(s)
- Ounay Ishak
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France
| | - Elodie Breton
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France
| | - Paolo Cabras
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France
- Image Guided Therapy, Pessac, France
| | | | - Paul Mondou
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France
- Université Paris-Saclay, CEA, CNRS, BAOBAB, Neurospin, 91191 Gif-sur-Yvette, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, INSERM, BioMaps, SHFJ, 91401 Orsay, France
| | - Benoît Larrat
- Université Paris-Saclay, CEA, CNRS, BAOBAB, Neurospin, 91191 Gif-sur-Yvette, France
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France
| |
Collapse
|
3
|
Lafond M, Payne A, Lafon C. Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples. Int J Hyperthermia 2024; 41:2389288. [PMID: 39134055 PMCID: PMC11375802 DOI: 10.1080/02656736.2024.2389288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of UT, Salt Lake City, UT, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| |
Collapse
|
4
|
López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release 2024; 372:901-913. [PMID: 38971426 DOI: 10.1016/j.jconrel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This review delves into the innovative technology of Blood-Brain Barrier (BBB) opening with low-intensity focused ultrasound in combination with microbubbles (LIFU-MB), a promising therapeutic modality aimed at enhancing drug delivery to the central nervous system (CNS). The BBB's selective permeability, while crucial for neuroprotection, significantly hampers the efficacy of pharmacological treatments for CNS disorders. LIFU-MB emerges as a non-invasive and localized method to transiently increase BBB permeability, facilitating the delivery of therapeutic molecules. Here, we review the procedural stages of LIFU-MB interventions, including planning and preparation, sonication, evaluation, and delivery, highlighting the technological diversity and methodological challenges encountered in current clinical applications. With an emphasis on safety and efficacy, we discuss the crucial aspects of ultrasound delivery, microbubble administration, acoustic feedback monitoring and assessment of BBB permeability. Finally, we explore the critical choices for effective BBB opening with LIFU-MB, focusing on selecting therapeutic agents, optimizing delivery methods, and timing for delivery. Overcoming existing barriers to integrate this technology into clinical practice could potentially revolutionize CNS drug delivery and treatment paradigms in the near future.
Collapse
Affiliation(s)
- Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Physics, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Castillo-Ortiz
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Technologies for Health and Well-being, Polytechnic University of Valencia, Valencia, Spain; Molecular Imaging Technologies Research Institute (I3M), Polytechnic University of Valencia, Valencia, Spain
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Biomedical Engineering, Polytechnic University of Madrid, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain.
| |
Collapse
|
5
|
Wang P, Chen J, Zhong R, Xia Y, Wu Z, Zhang C, Yao H. Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. Eur J Pharm Biopharm 2024; 198:114246. [PMID: 38479562 DOI: 10.1016/j.ejpb.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Immunotherapy has revolutionized cancer treatment by boosting the immune system and preventing disease escape mechanisms. Despite its potential, challenges like limited response rates and adverse immune effects impede its widespread clinical adoption. Ultrasound (US), known for its safety and effectiveness in tumor diagnosis and therapy, has been shown to significantly enhance immunotherapy when used with nanosystems. High-intensity focused ultrasound (HIFU) can obliterate tumor cells and elicit immune reactions through the creation of immunogenic debris. Low-intensity focused ultrasound (LIFU) bolsters tumor immunosuppression and mitigates metastasis risk by concentrating dendritic cells. Ultrasonic cavitation (UC) produces microbubbles that can transport immune enhancers directly, thus strengthening the immune response and therapeutic impact. Sonodynamic therapy (SDT) merges nanotechnology with immunotherapy, using specialized sonosensitizers to kill cancer cells and stimulate immune responses, increasing treatment success. This review discusses the integration of ultrasound-responsive nanosystems in tumor immunotherapy, exploring future opportunities and current hurdles.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Ji Chen
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Runming Zhong
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Yuanyuan Xia
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Zhina Wu
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Chunye Zhang
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Hai Yao
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China.
| |
Collapse
|
6
|
Desmarais S, Ramos-Palacios G, Porée J, Lee SA, Leconte A, Sadikot AF, Provost J. Equivalent-time-active-cavitation-imaging enables vascular-resolution blood-brain-barrier-opening-therapy planning. Phys Med Biol 2024; 69:055014. [PMID: 38157550 DOI: 10.1088/1361-6560/ad199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective. Linking cavitation and anatomy was found to be important for predictable outcomes in focused-ultrasound blood-brain-barrier-opening and requires high resolution cavitation mapping. However, cavitation mapping techniques for planning and monitoring of therapeutic procedures either (1) do not leverage the full resolution capabilities of ultrasound imaging or (2) place constraints on the length of the therapeutic pulse. This study aimed to develop a high-resolution technique that could resolve vascular anatomy in the cavitation map.Approach. Herein, we develop BandPass-sampled-equivalent-time-active-cavitation-imaging (BP-ETACI), derived from bandpass sampling and dual-frequency contrast imaging at 12.5 MHz to produce cavitation maps prior and during blood-brain barrier opening with long therapeutic bursts using a 1.5 MHz focused transducer in the brain of C57BL/6 mice.Main results. The BP-ETACI cavitation maps were found to correlate with the vascular anatomy in ultrasound localization microscopy vascular maps and in histological sections. Cavitation maps produced from non-blood-brain-barrier disrupting doses showed the same cavitation-bearing vasculature as maps produced over entire blood-brain-barrier opening procedures, allowing use for (1) monitoring focused-ultrasound blood-brain-barrier-opening (FUS-BBBO), but also for (2) therapy planning and target verification.Significance. BP-ETACI is versatile, created high resolution cavitation maps in the mouse brain and is easily translatable to existing FUS-BBBO experiments. As such, it provides a means to further study cavitation phenomena in FUS-BBBO.
Collapse
Affiliation(s)
| | | | | | | | | | - Abbas F Sadikot
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Canada
| | - Jean Provost
- Polytechnique Montréal, Montréal, Canada
- Institut de Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|