1
|
Wu Z, Wang J, Chen Z, Yang Q, Xing Z, Cao D, Bao J, Kang T, Lin J, Cai S, Chen Z, Cai C. FlexDTI: flexible diffusion gradient encoding scheme-based highly efficient diffusion tensor imaging using deep learning. Phys Med Biol 2024; 69:115012. [PMID: 38688288 DOI: 10.1088/1361-6560/ad45a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Objective. Most deep neural network-based diffusion tensor imaging methods require the diffusion gradients' number and directions in the data to be reconstructed to match those in the training data. This work aims to develop and evaluate a novel dynamic-convolution-based method called FlexDTI for highly efficient diffusion tensor reconstruction with flexible diffusion encoding gradient scheme.Approach. FlexDTI was developed to achieve high-quality DTI parametric mapping with flexible number and directions of diffusion encoding gradients. The method used dynamic convolution kernels to embed diffusion gradient direction information into feature maps of the corresponding diffusion signal. Furthermore, it realized the generalization of a flexible number of diffusion gradient directions by setting the maximum number of input channels of the network. The network was trained and tested using datasets from the Human Connectome Project and local hospitals. Results from FlexDTI and other advanced tensor parameter estimation methods were compared.Main results. Compared to other methods, FlexDTI successfully achieves high-quality diffusion tensor-derived parameters even if the number and directions of diffusion encoding gradients change. It reduces normalized root mean squared error by about 50% on fractional anisotropy and 15% on mean diffusivity, compared with the state-of-the-art deep learning method with flexible diffusion encoding gradient scheme.Significance. FlexDTI can well learn diffusion gradient direction information to achieve generalized DTI reconstruction with flexible diffusion gradient scheme. Both flexibility and reconstruction quality can be taken into account in this network.
Collapse
Affiliation(s)
- Zejun Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiechao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zunquan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qinqin Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhen Xing
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Taijiang District, Fuzhou 350005, People's Republic of China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Taijiang District, Fuzhou 350005, People's Republic of China
| | - Jianfeng Bao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Taishan Kang
- Department of MRI, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Jianzhong Lin
- Department of MRI, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
2
|
Saju GA, Li Z, Chang Y. Improving deep PROPELLER MRI via synthetic blade augmentation and enhanced generalization. Magn Reson Imaging 2024; 108:1-10. [PMID: 38295910 DOI: 10.1016/j.mri.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
In PROPELLER MRI, obtaining sufficient high-quality blade data remains a challenge, so the efficiency and generalization of deep learning-based reconstruction models are deteriorated. Due to narrow rotated and translated blades acquired in PROPELLER, the technique of data augmentation that is used for deep learning-based Cartesian MRI reconstruction cannot be directly applied. To address the issue, this paper introduces a novel approach for the generation of synthetic PROPELLER blades, and it is subsequently employed in data augmentation for undersampled blades reconstruction. The principal aim of this study is to address the challenges of reconstructing undersampled blades to enhance both image quality and computational efficiency. Evaluation metrics including PSNR, NMSE, and SSIM indicate superior performance of the model trained with augmented data compared to non-augmented counterparts. The synthetic blade augmentation significantly enhances the model's generalization capability and enables robust performance across varying imaging conditions. Furthermore, the study demonstrates the feasibility of utilizing synthetic blades exclusively in the training phase, suggesting a reduced dependency on real PROPELLER blades. This innovation in synthetic blade generation and data augmentation technique contributes to enhanced image quality and improved generalization capability of the associated deep learning model for PROPELLER MRI reconstruction.
Collapse
Affiliation(s)
- Gulfam Ahmed Saju
- Department of Computer and Information Science Department, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA.
| | - Zhiqiang Li
- Barrow Neurological Institute, Phoenix, AZ 85013, USA.
| | - Yuchou Chang
- Department of Computer and Information Science Department, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA.
| |
Collapse
|