1
|
Ghemiș DM, Marcu LG. RTOG 0915-compliant patient specific QA for lung stereotactic body radiotherapy using the new PTW 1600SRS detector array. Phys Med 2024; 127:104822. [PMID: 39368297 DOI: 10.1016/j.ejmp.2024.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
PURPOSE An area of focus in radiotherapy is the treatment of oligometastatic lung cancer using highly conformal techniques such as SBRT, performed using VMAT that involves flattening filter free (FFF) beams. This study proposes a new calibration procedure for PTW Octavius 1600SRS detector array and was designed to also evaluate clinical and dosimetric aspects of a patient-specific quality assurance (PSQA) for lung SBRT patients. METHODS The cohort consists of 20 patients, treated for lung metastases using SBRT with 50 Gy dose in 5 fractions (10 Gy/fr). The proposed calibration method uses only one calibration factor determined at maximum dose rate of 6MV FFF photon beam. The dosimetric accuracy of achieving a high dose gradient was analyzed using the RTOG 0915 protocol and was confirmed by PSQA procedures using the PTW Octavius 1600SRS detector. RESULTS Conformity index, gradient index, maximum dose at 2 cm and V20 parameters were evaluated with clinical favorable results, with only two plans with lesions situated in the inferior lobe exceeding the deviation allowed for the gradient index. Gamma passing rates using the new calibration method were 98.93% and 99.38% for different gamma criteria of 2 mm/2% and 1 mm/3%, respectively. CONCLUSIONS The proposed method for calibration using one calibration factor at maximum dose rate for the involved photon beam shows clinically acceptable gamma passing rates. Employing the RTOG 0915 protocol for lung SBRT treatment plan evaluation brings important dosimetric information about treatment plan quality and dose gradient fall-off which can be correlated with the results achieved during the pretreatment verification procedures.
Collapse
Affiliation(s)
- Diana M Ghemiș
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania.
| | - Loredana G Marcu
- Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Carver A, Scaggion A, Jurado-Bruggeman D, Blanck O, Dalqvist E, Romana Giglioli F, Jenko A, Karlsson K, Staykova V, Swinnnen A, Warren S, Mancosu P, Jornet N. Treatment planning and delivery practice of lung SBRT: Results of the 2022 ESTRO physics survey. Radiother Oncol 2024; 196:110318. [PMID: 38702015 DOI: 10.1016/j.radonc.2024.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND PURPOSE The use of Stereotactic Body Radiation Therapy (SBRT) in lung cancer is increasing. However, there is no consensus on the most appropriate treatment planning and delivery practice for lung SBRT. To gauge the range of practice, quantify its variability and identify where consensus might be achieved, ESTRO surveyed the medical physics community. MATERIALS AND METHODS An online survey was distributed to ESTRO's physicist membership in 2022, covering experience, dose and fractionation, target delineation, dose calculation and planning practice, imaging protocols, and quality assurance. RESULTS Two-hundred and forty-four unique answers were collected after data cleaning. Most respondents were from Europe the majority of which had more than 5 years' experience in SBRT. The large majority of respondents deliver lung SBRT with the VMAT technique on C-arm Linear Accelerators (Linacs) employing daily pre-treatment CBCT imaging. A broad spectrum of fractionation schemes were reported, alongside an equally wide range of dose prescription protocols. A clear preference was noted for prescribing to 95% or greater of the PTV. Several issues emerged regarding the dose calculation algorithm: 22% did not state it while 24% neglected to specify the conditions under which the dose was calculated. Contouring was usually performed on Maximum or Average Intensity Projection images while dose was mainly computed on the latter. No clear indications emerged for plan homogeneity, complexity, and conformity assessment. Approximately 40% of the responders participated in inter-centre credentialing of SBRT in the last five years. Substantial differences emerged between high and low experience centres, with the latter employing less accurate algorithms and older equipment. CONCLUSION The survey revealed an evident heterogeneity in numerous aspects of the clinical implementation of lung SBRT treatments. International guidelines and codes of practice might promote harmonisation.
Collapse
Affiliation(s)
- Antony Carver
- University Hospitals Birmingham NHS Foundation Trust, Department of Medical Physics, Birmingham, United Kingdom
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Diego Jurado-Bruggeman
- Institut Català d'Oncologia, Medical Physics and Radiation Protection Department, Girona, Spain
| | - Oliver Blanck
- University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel, Germany
| | - Emmy Dalqvist
- Karolinska University Hospital, Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Stockholm, Sweden; KarolinskaInstitutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Aljasa Jenko
- Institute of Oncology Ljubljana, Department of Radiotherapy, Ljubljana, Slovenia
| | - Kristin Karlsson
- Karolinska University Hospital, Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Stockholm, Sweden; KarolinskaInstitutet, Department of Oncology-Pathology, Stockholm, Sweden
| | - Vanya Staykova
- Guy's and St Thomas' NHS Foundation Trust, Radiotherapy Physics, London, United Kingdom
| | - Ans Swinnnen
- GROW School for Oncology, Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), Maastricht, The Netherlands
| | - Samantha Warren
- Northern Centre for Cancer Care, Freeman Hospital, Department of Medical Physics, Newcastle Upon Tyne, United Kingdom
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Medical Physics Unit, Department of Radiotherapy and Radiosurgery, Rozzano-Milan, Italy.
| | - Nuria Jornet
- Hospital de la Santa Creu i Sant Pau, Servei de Radiofísica i Radioprotecció, Barcelona, Spain
| |
Collapse
|
3
|
Deng J, Liu S, Huang Y, Li X, Wu X. Evaluating AAPM-TG-218 recommendations: Gamma index tolerance and action limits in IMRT and VMAT quality assurance using SunCHECK. J Appl Clin Med Phys 2024; 25:e14277. [PMID: 38243604 PMCID: PMC11163510 DOI: 10.1002/acm2.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024] Open
Abstract
PURPOSE This study aimed to improve the safety and accuracy of radiotherapy by establishing tolerance (TL) and action (AL) limits for the gamma index in patient-specific quality assurance (PSQA) for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) using SunCHECK software, as per AAPM TG-218 report recommendations. METHODS The study included 125 patients divided into six groups by treatment regions (H&N, thoracic and pelvic) and techniques (VMAT, IMRT). SunCHECK was used to calculate the gamma passing rate (%GP) and dose error (%DE) for each patient, for the planning target volume and organs at risk (OARs). The TL and AL were then determined for each group according to TG-218 recommendations. We conducted a comprehensive analysis to compare %DE among different groups and examined the relationship between %GP and %DE. RESULTS The TL and AL of all groups were more stringent than the common standard as defined by the TG218 report. The TL and AL values of the groups differed significantly, and the values for the thoracic groups were lower for both VMAT and IMRT. The %DE of the parameters D95%, D90%, and Dmean in the planning target volume, and Dmean and Dmax in OARs were significantly different. The dose deviation of VMAT was larger than IMRT, especially in the thoracic group. A %GP and %DE correlation analysis showed a strong correlation for the planning target volume, but a weak correlation for the OARs. Additionally, a significant correlation existed between %GP of SunCHECK and Delta4. CONCLUSION The study established TL and AL values tailored to various anatomical regions and treatment techniques at our institution. Establishing PSQA workflows for VMAT and IMRT offers valuable clinical insights and guidance. We also suggest developing a standard combining clinically relevant metrics with %GP to evaluate PSQA results comprehensively.
Collapse
Affiliation(s)
- Jia Deng
- Department of Radiation OncologyShaanxi Provincial Tumor HospitalXianShaanxiChina
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxiChina
| | - ShengYan Liu
- Department of Radiation OncologyYulin Xingyuan HospitalXi'anChina
| | - Yun Huang
- Department of OncologySecond Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyang CityGuizhou ProvinceChina
| | - Xiuquan Li
- Department of OncologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiangyang Wu
- Department of Radiation OncologyShaanxi Provincial Tumor HospitalXianShaanxiChina
| |
Collapse
|
4
|
Lee M, Noh S, Shin JB, Kwak J, Jeong C. Evaluation of Fused Deposition Modeling Materials for 3D-Printed Container of Dosimetric Polymer Gel. Gels 2024; 10:146. [PMID: 38391476 PMCID: PMC10888196 DOI: 10.3390/gels10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Accurate dosimetric verification is becoming increasingly important in radiotherapy. Although polymer gel dosimetry may be useful for verifying complex 3D dose distributions, it has limitations for clinical application due to its strong reactivity with oxygen and other contaminants. Therefore, it is important that the material of the gel storage container blocks reaction with external contaminants. In this study, we tested the effect of air and the chemical permeability of various polymer-based 3D printing materials that can be used as gel containers. A methacrylic acid, gelatin, and tetrakis (hydroxymethyl) phosphonium chloride gel was used. Five types of printing materials that can be applied to the fused deposition modeling (FDM)-type 3D printer were compared: acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), polylactic acid (PLA), and polypropylene (PP) (reference: glass vial). The map of R2 (1/T2) relaxation rates for each material, obtained from magnetic resonance imaging scans, was analyzed. Additionally, response histograms and dose calibration curves from the R2 map were evaluated. The R2 distribution showed that CPE had sharper boundaries than the other materials, and the profile gradient of CPE was also closest to the reference vial. Histograms and dose calibration showed that CPE provided the most homogeneous and the highest relative response of 83.5%, with 8.6% root mean square error, compared with the reference vial. These results indicate that CPE is a reasonable material for the FDM-type 3D printing gel container.
Collapse
Affiliation(s)
- Minsik Lee
- Department of Radiation Oncology, Kangwon National University Hospital, 157 Baengnyeong-ro, Chuncheon-si 24290, Republic of Korea
| | - Seonyeong Noh
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jun-Bong Shin
- Department of Radiation Oncology, Kangwon National University Hospital, 157 Baengnyeong-ro, Chuncheon-si 24290, Republic of Korea
| | - Jungwon Kwak
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Chiyoung Jeong
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|