Lyra S, Voss F, Coenen A, Blase D, Aguirregomezcorta IB, Uguz DU, Leonhardt S, Antink CH. A Neonatal Phantom for Vital Signs Simulation.
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021;
15:949-959. [PMID:
34449392 DOI:
10.1109/tbcas.2021.3108066]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neonatal intensive care units provide vital medical support for premature infants. The key aspect in neonatal care is the continuous monitoring of vital signs measured using adhesive skin sensors. Since sensors can cause irritation of the skin and lead to infections, research focuses on contact-free, camera-based methods such as infrared thermography and photoplethysmography imaging. The development of image processing algorithms requires large datasets, but recording the necessary data from studies brings tremendous effort and costs. Therefore, realistic patient phantoms would be feasible to create a comprehensive dataset and validate image-based algorithms. This work describes the realization of a neonatal phantom which can simulate physiological vital parameters such as pulse rate and thermoregulation. It mimics the outer appearance of premature infants using a 3D printed base structure coated with several layers of modified, skin-colored silicone. A distribution of red and infrared LEDs in the scaffold enables the simulation of a PPG signal by mimicking pulsative light intensity changes on the skin. Additionally, the body temperature of the phantom is individually adjustable in several regions using heating elements. In the validation process for PPG simulation, the feasibility of setting different pulse frequencies and the variation of oxygen saturation levels was obtained. Furthermore, heating tests showed region-dependent temperature variations between 0.19 °C and 0.81 °C around the setpoint. In conclusion, the proposed neonatal phantom can be used to simulate a variety of vital parameters of preterm infants and, therefore, enables the implementation of image processing algorithms for the analysis of the medical state.
Collapse