1
|
Garbarino S, Bragazzi NL. Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. J Pers Med 2024; 14:598. [PMID: 38929819 PMCID: PMC11204813 DOI: 10.3390/jpm14060598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Personalized sleep medicine represents a transformative shift in healthcare, emphasizing individualized approaches to optimizing sleep health, considering the bidirectional relationship between sleep and health. This field moves beyond conventional methods, tailoring care to the unique physiological and psychological needs of individuals to improve sleep quality and manage disorders. Key to this approach is the consideration of diverse factors like genetic predispositions, lifestyle habits, environmental factors, and underlying health conditions. This enables more accurate diagnoses, targeted treatments, and proactive management. Technological advancements play a pivotal role in this field: wearable devices, mobile health applications, and advanced diagnostic tools collect detailed sleep data for continuous monitoring and analysis. The integration of machine learning and artificial intelligence enhances data interpretation, offering personalized treatment plans based on individual sleep profiles. Moreover, research on circadian rhythms and sleep physiology is advancing our understanding of sleep's impact on overall health. The next generation of wearable technology will integrate more seamlessly with IoT and smart home systems, facilitating holistic sleep environment management. Telemedicine and virtual healthcare platforms will increase accessibility to specialized care, especially in remote areas. Advancements will also focus on integrating various data sources for comprehensive assessments and treatments. Genomic and molecular research could lead to breakthroughs in understanding individual sleep disorders, informing highly personalized treatment plans. Sophisticated methods for sleep stage estimation, including machine learning techniques, are improving diagnostic precision. Computational models, particularly for conditions like obstructive sleep apnea, are enabling patient-specific treatment strategies. The future of personalized sleep medicine will likely involve cross-disciplinary collaborations, integrating cognitive behavioral therapy and mental health interventions. Public awareness and education about personalized sleep approaches, alongside updated regulatory frameworks for data security and privacy, are essential. Longitudinal studies will provide insights into evolving sleep patterns, further refining treatment approaches. In conclusion, personalized sleep medicine is revolutionizing sleep disorder treatment, leveraging individual characteristics and advanced technologies for improved diagnosis, treatment, and management. This shift towards individualized care marks a significant advancement in healthcare, enhancing life quality for those with sleep disorders.
Collapse
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, 16126 Genoa, Italy;
- Post-Graduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| |
Collapse
|
2
|
Yue H, Chen Z, Guo W, Sun L, Dai Y, Wang Y, Ma W, Fan X, Wen W, Lei W. Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice. Sleep Med Rev 2024; 74:101897. [PMID: 38306788 DOI: 10.1016/j.smrv.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Over the past few decades, researchers have attempted to simplify and accelerate the process of sleep stage classification through various approaches; however, only a few such approaches have gained widespread acceptance. Artificial intelligence technology, particularly deep learning, is promising for earning the trust of the sleep medicine community in automated sleep-staging systems, thus facilitating its application in clinical practice and integration into daily life. We aimed to comprehensively review the latest methods that are applying deep learning for enhancing sleep staging efficiency and accuracy. Starting from the requisite "data" for constructing deep learning algorithms, we elucidated the current landscape of this domain and summarized the fundamental modeling process, encompassing signal selection, data pre-processing, model architecture, classification tasks, and performance metrics. Furthermore, we reviewed the applications of automated sleep staging in scenarios such as sleep-disorder screening, diagnostic procedures, and health monitoring and management. Finally, we conducted an in-depth analysis and discussion of the challenges and future in intelligent sleep staging, particularly focusing on large-scale sleep datasets, interdisciplinary collaborations, and human-computer interactions.
Collapse
Affiliation(s)
- Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhuqi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lin Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yidan Dai
- School of Computer Science, South China Normal University, Guangzhou, People's Republic of China
| | - Yiming Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenjun Ma
- School of Computer Science, South China Normal University, Guangzhou, People's Republic of China
| | - Xiaomao Fan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, People's Republic of China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Del Campo F, Arroyo CA, Zamarrón C, Álvarez D. Diagnosis of Obstructive Sleep Apnea in Patients with Associated Comorbidity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:43-61. [PMID: 36217078 DOI: 10.1007/978-3-031-06413-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Obstructive sleep apnea (OSA) is a heterogeneous disease with many physiological implications. OSA is associated with a great diversity of diseases, with which it shares common and very often bidirectional pathophysiological mechanisms, leading to significantly negative implications on morbidity and mortality. In these patients, underdiagnosis of OSA is high. Concerning cardiorespiratory comorbidities, several studies have assessed the usefulness of simplified screening tests for OSA in patients with hypertension, COPD, heart failure, atrial fibrillation, stroke, morbid obesity, and in hospitalized elders.The key question is whether there is any benefit in the screening for the existence of OSA in patients with comorbidities. In this regard, there are few studies evaluating the performance of the various diagnostic procedures in patients at high risk for OSA. The purpose of this chapter is to review the existing literature about diagnosis in those diseases with a high risk for OSA, with special reference to artificial intelligence-related methods.
Collapse
Affiliation(s)
- Félix Del Campo
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
| | - C Ainhoa Arroyo
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Carlos Zamarrón
- Division of Respiratory Medicine, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Daniel Álvarez
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain.
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Behar JA, Shamay Y, Álvarez D, Del Campo F, Penzel T. From sleep medicine to medicine during sleep. Physiol Meas 2021; 42. [PMID: 34964719 DOI: 10.1088/1361-6579/ac3e38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023]
Affiliation(s)
- Joachim A Behar
- Faculty of Biomedical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Daniel Álvarez
- Río Hortega University Hospital Valladolid, Valladolid, Spain.,Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Félix Del Campo
- Río Hortega University Hospital Valladolid, Valladolid, Spain.,Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | | |
Collapse
|