1
|
Cansiz B, Kilinc CU, Serbes G. Tunable Q-factor wavelet transform based lung signal decomposition and statistical feature extraction for effective lung disease classification. Comput Biol Med 2024; 178:108698. [PMID: 38861896 DOI: 10.1016/j.compbiomed.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
The auscultation is a non-invasive and cost-effective method used for the diagnosis of lung diseases, which are one of the leading causes of death worldwide. However, the efficacy of the auscultation suffers from the limitations of the analog stethoscopes and the subjective nature of human interpretation. To overcome these limitations, the accurate diagnosis of these diseases by employing the computer based automated algorithms applied to the digitized lung sounds has been studied for the last decades. This study proposes a novel approach that uses a Tunable Q-factor Wavelet Transform (TQWT) based statistical feature extraction followed by individual and ensemble learning model training with the aim of lung disease classification. During the learning stage various machine learning algorithms are utilized as the individual learners as well as the hard and soft voting fusion approaches are employed for performance enhancement with the aid of the predictions of individual models. For an objective evaluation of the proposed approach, the study was structured into two main tasks that were investigated in detail by using several sub-tasks to comparison with state-of-the-art studies. Among the sub-tasks which investigates patient-based classification, the highest accuracy obtained for the binary classification was achieved as 97.63% (healthy vs. non-healthy), while accuracy values up to 66.32% for three-class classification (obstructive-related, restrictive-related, and healthy), and 53.42% for five-class classification (asthma, chronic obstructive pulmonary disease, interstitial lung disease, pulmonary infection, and healthy) were obtained. Regarding the other sub-task, which investigates sample-based classification, the proposed approach was superior to almost all previous findings. The proposed method underscores the potential of TQWT based signal decomposition that leverages the power of its adaptive time-frequency resolution property satisfied by Q-factor adjustability. The obtained results are very promising and the proposed approach paves the way for more accurate and automated digital auscultation techniques in clinical settings.
Collapse
Affiliation(s)
- Berke Cansiz
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Coskuvar Utkan Kilinc
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Gorkem Serbes
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
2
|
Khan R, Khan SU, Saeed U, Koo IS. Auscultation-Based Pulmonary Disease Detection through Parallel Transformation and Deep Learning. Bioengineering (Basel) 2024; 11:586. [PMID: 38927822 PMCID: PMC11200393 DOI: 10.3390/bioengineering11060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory diseases are among the leading causes of death, with many individuals in a population frequently affected by various types of pulmonary disorders. Early diagnosis and patient monitoring (traditionally involving lung auscultation) are essential for the effective management of respiratory diseases. However, the interpretation of lung sounds is a subjective and labor-intensive process that demands considerable medical expertise, and there is a good chance of misclassification. To address this problem, we propose a hybrid deep learning technique that incorporates signal processing techniques. Parallel transformation is applied to adventitious respiratory sounds, transforming lung sound signals into two distinct time-frequency scalograms: the continuous wavelet transform and the mel spectrogram. Furthermore, parallel convolutional autoencoders are employed to extract features from scalograms, and the resulting latent space features are fused into a hybrid feature pool. Finally, leveraging a long short-term memory model, a feature from the latent space is used as input for classifying various types of respiratory diseases. Our work is evaluated using the ICBHI-2017 lung sound dataset. The experimental findings indicate that our proposed method achieves promising predictive performance, with average values for accuracy, sensitivity, specificity, and F1-score of 94.16%, 89.56%, 99.10%, and 89.56%, respectively, for eight-class respiratory diseases; 79.61%, 78.55%, 92.49%, and 78.67%, respectively, for four-class diseases; and 85.61%, 83.44%, 83.44%, and 84.21%, respectively, for binary-class (normal vs. abnormal) lung sounds.
Collapse
Affiliation(s)
- Rehan Khan
- Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.); (S.U.K.)
| | - Shafi Ullah Khan
- Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.); (S.U.K.)
| | - Umer Saeed
- Research Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK;
| | - In-Soo Koo
- Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.); (S.U.K.)
| |
Collapse
|
3
|
Zhou G, Liu C, Li X, Liang S, Wang R, Huang X. An open auscultation dataset for machine learning-based respiratory diagnosis studies. JASA EXPRESS LETTERS 2024; 4:052001. [PMID: 38717466 DOI: 10.1121/10.0025851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 10/10/2024]
Abstract
Machine learning enabled auscultating diagnosis can provide promising solutions especially for prescreening purposes. The bottleneck for its potential success is that high-quality datasets for training are still scarce. An open auscultation dataset that consists of samples and annotations from patients and healthy individuals is established in this work for the respiratory diagnosis studies with machine learning, which is of both scientific importance and practical potential. A machine learning approach is examined to showcase the use of this new dataset for lung sound classifications with different diseases. The open dataset is available to the public online.
Collapse
Affiliation(s)
- Guanyu Zhou
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China
| | - Chengjian Liu
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| | - Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China
| | - Sicong Liang
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| | - Ruichen Wang
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| | - Xun Huang
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| |
Collapse
|
4
|
Sabry AH, I. Dallal Bashi O, Nik Ali N, Mahmood Al Kubaisi Y. Lung disease recognition methods using audio-based analysis with machine learning. Heliyon 2024; 10:e26218. [PMID: 38420389 PMCID: PMC10900411 DOI: 10.1016/j.heliyon.2024.e26218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The use of computer-based automated approaches and improvements in lung sound recording techniques have made lung sound-based diagnostics even better and devoid of subjectivity errors. Using a computer to evaluate lung sound features more thoroughly with the use of analyzing changes in lung sound behavior, recording measurements, suppressing the presence of noise contaminations, and graphical representations are all made possible by computer-based lung sound analysis. This paper starts with a discussion of the need for this research area, providing an overview of the field and the motivations behind it. Following that, it details the survey methodology used in this work. It presents a discussion on the elements of sound-based lung disease classification using machine learning algorithms. This includes commonly prior considered datasets, feature extraction techniques, pre-processing methods, artifact removal methods, lung-heart sound separation, deep learning algorithms, and wavelet transform of lung audio signals. The study introduces studies that review lung screening including a summary table of these references and discusses the literature gaps in the existing studies. It is concluded that the use of sound-based machine learning in the classification of respiratory diseases has promising results. While we believe this material will prove valuable to physicians and researchers exploring sound-signal-based machine learning, large-scale investigations remain essential to solidify the findings and foster wider adoption within the medical community.
Collapse
Affiliation(s)
- Ahmad H. Sabry
- Department of Medical Instrumentation Engineering Techniques, Shatt Al-Arab University College, Basra, Iraq
| | - Omar I. Dallal Bashi
- Medical Technical Institute, Northern Technical University, 95G2+P34, Mosul, 41002, Iraq
| | - N.H. Nik Ali
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Yasir Mahmood Al Kubaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai, 4545, United Arab Emirates
| |
Collapse
|
5
|
Garcia-Mendez JP, Lal A, Herasevich S, Tekin A, Pinevich Y, Lipatov K, Wang HY, Qamar S, Ayala IN, Khapov I, Gerberi DJ, Diedrich D, Pickering BW, Herasevich V. Machine Learning for Automated Classification of Abnormal Lung Sounds Obtained from Public Databases: A Systematic Review. Bioengineering (Basel) 2023; 10:1155. [PMID: 37892885 PMCID: PMC10604310 DOI: 10.3390/bioengineering10101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Pulmonary auscultation is essential for detecting abnormal lung sounds during physical assessments, but its reliability depends on the operator. Machine learning (ML) models offer an alternative by automatically classifying lung sounds. ML models require substantial data, and public databases aim to address this limitation. This systematic review compares characteristics, diagnostic accuracy, concerns, and data sources of existing models in the literature. Papers published from five major databases between 1990 and 2022 were assessed. Quality assessment was accomplished with a modified QUADAS-2 tool. The review encompassed 62 studies utilizing ML models and public-access databases for lung sound classification. Artificial neural networks (ANN) and support vector machines (SVM) were frequently employed in the ML classifiers. The accuracy ranged from 49.43% to 100% for discriminating abnormal sound types and 69.40% to 99.62% for disease class classification. Seventeen public databases were identified, with the ICBHI 2017 database being the most used (66%). The majority of studies exhibited a high risk of bias and concerns related to patient selection and reference standards. Summarizing, ML models can effectively classify abnormal lung sounds using publicly available data sources. Nevertheless, inconsistent reporting and methodologies pose limitations to advancing the field, and therefore, public databases should adhere to standardized recording and labeling procedures.
Collapse
Affiliation(s)
- Juan P. Garcia-Mendez
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Svetlana Herasevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Aysun Tekin
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Yuliya Pinevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
- Department of Cardiac Anesthesiology and Intensive Care, Republican Clinical Medical Center, 223052 Minsk, Belarus
| | - Kirill Lipatov
- Division of Pulmonary Medicine, Mayo Clinic Health Systems, Essentia Health, Duluth, MN 55805, USA
| | - Hsin-Yi Wang
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
- Department of Anesthesiology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Shahraz Qamar
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Ivan N. Ayala
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Ivan Khapov
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | | | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Brian W. Pickering
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| |
Collapse
|
6
|
Song W, Han J. Patch-level contrastive embedding learning for respiratory sound classification. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Sonali CS, Kiran J, Chinmayi BS, Suma KV, Easa M. Transformer-Based Network for Accurate Classification of Lung Auscultation Sounds. Crit Rev Biomed Eng 2023; 51:1-16. [PMID: 37824331 DOI: 10.1615/critrevbiomedeng.2023048981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Respiratory diseases are a major cause of death worldwide, affecting a significant proportion of the population with lung function abnormalities that can lead to respiratory illnesses. Early detection and prevention are critical to effective management of these disorders. Deep learning algorithms offer a promising approach for analyzing complex medical data and aiding in early disease detection. While transformer-based models for sequence classification have proven effective for tasks like sentiment analysis, topic classification, etc., their potential for respiratory disease classification remains largely unexplored. This paper proposes a classifier utilizing the transformer-encoder block, which can capture complex patterns and dependencies in medical data. The proposed model is trained and evaluated on a large dataset from the International Conference on Biomedical Health Informatics 2017, achieving state-of-the-art results with a mean sensitivity of 70.53%, mean specificity of 84.10%, mean average score of 77.32%, and mean harmonic score of 76.10%. These results demonstrate the model's effectiveness in diagnosing respiratory diseases while taking up minimal computational resources.
Collapse
Affiliation(s)
- C S Sonali
- Department of Electronics and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India
| | - John Kiran
- Department of Electronics and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India
| | - B S Chinmayi
- Department of Electronics and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India
| | - K V Suma
- Department of Electronics and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India
| | - Muhammad Easa
- Department of Electronics and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
8
|
Nguyen T, Pernkopf F. Lung Sound Classification Using Co-tuning and Stochastic Normalization. IEEE Trans Biomed Eng 2022; 69:2872-2882. [PMID: 35254969 DOI: 10.1109/tbme.2022.3156293] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Computational methods for lung sound analysis are beneficial for computer-aided diagnosis support, storage and monitoring in critical care. In this paper, we use pre-trained ResNet models as backbone architectures for classification of adventitious lung sounds and respiratory diseases. The learned representation of the pre-trained model is transferred by using vanilla fine-tuning, co-tuning, stochastic normalization and the combination of the co-tuning and stochastic normalization techniques. Furthermore, data augmentation in both time domain and time-frequency domain is used to account for the class imbalance of the ICBHI and our multi-channel lung sound dataset. Additionally, we introduce spectrum correction to account for the variations of the recording device properties on the ICBHI dataset. Empirically, our proposed systems mostly outperform all state-of-the-art lung sound classification systems for the adventitious lung sounds and respiratory diseases of both datasets.
Collapse
|