1
|
Lin SH, Lo YY, Hsu YH, Lin CC, Zan HW, Lin YH, Wuu DS, Hsiao CL, Horng RH. Study on different isolation technology on the performance of blue micro-LEDs array applications. DISCOVER NANO 2024; 19:102. [PMID: 38869646 DOI: 10.1186/s11671-024-04047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
In this study, a 3 × 3 blue micro-LED array with a pixel size of 10 × 10 μm2 and a pitch of 15 μm was fabricated on an epilayer grown on a sapphire substrate using metalorganic chemical vapor deposition technology. The fabrication process involved photolithography, wet and dry etching, E-beam evaporation, and ion implantation technology. Arsenic multi-energy implantation was utilized to replace the mesa etching for electrical isolation, where the implantation depth increased with the average energy. Different ion depth profiles had varying effects on electrical properties, such as forward current and leakage currents, potentially causing damage to the n-GaN layer and increasing the series resistance of the LEDs. As the implantation depth increased, the light output power and peak external quantum efficiency of the LEDs also increased, improving from 5.33 to 9.82%. However, the efficiency droop also increased from 46.3 to 48.6%.
Collapse
Affiliation(s)
- Shao-Hua Lin
- Institute of Electrics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yu-Yun Lo
- Department of Photonis, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yu-Hsuan Hsu
- Department of Photonis, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chien-Chung Lin
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Hsiao-Wen Zan
- Department of Photonis, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yi-Hsin Lin
- Department of Photonis, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Dong-Sing Wuu
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou, 54561, Taiwan, ROC
| | - Ching-Lien Hsiao
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Ray-Hua Horng
- Institute of Electrics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| |
Collapse
|
2
|
Sakharova NA, Antunes JM, Pereira AFG, Chaparro BM, Parreira TG, Fernandes JV. Numerical Evaluation of the Elastic Moduli of AlN and GaN Nanosheets. MATERIALS (BASEL, SWITZERLAND) 2024; 17:799. [PMID: 38399050 PMCID: PMC10890007 DOI: 10.3390/ma17040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Two-dimensional (2D) nanostructures of aluminum nitride (AlN) and gallium nitride (GaN), called nanosheets, have a graphene-like atomic arrangement and represent novel materials with important upcoming applications in the fields of flexible electronics, optoelectronics, and strain engineering, among others. Knowledge of their mechanical behavior is key to the correct design and enhanced functioning of advanced 2D devices and systems based on aluminum nitride and gallium nitride nanosheets. With this background, the surface Young's and shear moduli of AlN and GaN nanosheets over a wide range of aspect ratios were assessed using the nanoscale continuum model (NCM), also known as the molecular structural mechanics (MSM) approach. The NCM/MSM approach uses elastic beam elements to represent interatomic bonds and allows the elastic moduli of nanosheets to be evaluated in a simple way. The surface Young's and shear moduli calculated in the current study contribute to building a reference for the evaluation of the elastic moduli of AlN and GaN nanosheets using the theoretical method. The results show that an analytical methodology can be used to assess the Young's and shear moduli of aluminum nitride and gallium nitride nanosheets without the need for numerical simulation. An exploratory study was performed to adjust the input parameters of the numerical simulation, which led to good agreement with the results of elastic moduli available in the literature. The limitations of this method are also discussed.
Collapse
Affiliation(s)
- Nataliya A. Sakharova
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| | - Jorge M. Antunes
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
- Abrantes High School of Technology, Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal;
| | - André F. G. Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| | - Bruno M. Chaparro
- Abrantes High School of Technology, Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal;
| | - Tomás G. Parreira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| | - José V. Fernandes
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| |
Collapse
|
3
|
Tao H, Xu S, Zhang J, Su H, Gao Y, Zhang Y, Zhou H, Hao Y. Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation. OPTICS EXPRESS 2023; 31:20850-20860. [PMID: 37381199 DOI: 10.1364/oe.492088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/20/2023] [Indexed: 06/30/2023]
Abstract
Hetero-epitaxial growth of GaN often leads to high density of threading dislocations, which poses a significant challenge to the promotion of the performance of GaN-based devices. In this study, we address this issue by utilizing an Al-ion implantation pretreatment on sapphire substrates, which induces high-quality regularly arranged nucleation and promotes the crystal quality of GaN. Specifically, we demonstrate that an Al-ion dose of 1013 cm-2 leads to a reduction of full width at half maximum values of (002)/(102) plane X-ray rocking curves from 204.7/340.9 arcsec to 187.0/259.5 arcsec. Furthermore, a systematic investigation of GaN film grown on the sapphire substrate with various Al-ion doses is also performed, and the nucleation layer growth evolution on different sapphire substrates is analyzed. As confirmed by the atomic force microscope results of the nucleation layer, the ion implantation induced high-quality nucleation is demonstrated, which results in the improved crystal quality of the as-grown GaN films. Transmission electron microscope measurement also proves the dislocation suppression through this method. In addition, the GaN-based light-emitting diodes (LEDs) were also fabricated based on the as-grown GaN template and the electrical properties are analyzed. The wall-plug efficiency at 20 mA has risen from 30.7% to 37.4% of LEDs with Al-ion implantation sapphire substrate at a dose of 1013 cm-2. This innovative technique is effective in the promotion of GaN quality, which can be a promising high-quality template for LEDs and electronic devices.
Collapse
|
4
|
Ding Y, Xue K, Zhang J, Yan L, Li Q, Yao Y, Zhou L. Two-Dimensional Octuple-Atomic-Layer M 2Si 2N 4 (M = Al, Ga and In) with Long Carrier Lifetime. MICROMACHINES 2023; 14:405. [PMID: 36838105 PMCID: PMC9966885 DOI: 10.3390/mi14020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Bulk III-nitride materials MN (M = Al, Ga and In) and their alloys have been widely used in high-power electronic and optoelectronic devices, but stable two-dimensional (2D) III-nitride materials, except h-BN, have not been realized yet. A new kind of 2D III-nitride material M2Si2N4 (M = Al, Ga and In) is predicted by choosing Si as the appropriate passivation element. The stability, electronic and optical properties of 2D M2Si2N4 materials are studied systematically based on first-principles calculations. The results show that Al2Si2N4 and Ga2Si2N4 are found to be indirect bandgap semiconductors, while In2Si2N4 is a direct bandgap semiconductor. Moreover, Al2Si2N4 and In2Si2N4 have good absorption ability in the visible light region, while Ga2Si2N4 is an ultraviolet-light-absorbing material. Furthermore, the carrier lifetimes of Ga2Si2N4 and In2Si2N4 are as large as 157.89 and 103.99 ns, respectively. All these desirable properties of M2Si2N4 materials make them attractive for applications in electronics and photoelectronics.
Collapse
Affiliation(s)
- Yimin Ding
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Kui Xue
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Luo Yan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiaoqiao Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yisen Yao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|