1
|
Kataoka T, Liu Z, Yamada I, Galindo TGP, Tagaya M. Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. J Mater Chem B 2024; 12:6805-6826. [PMID: 38919049 DOI: 10.1039/d4tb00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This review completely covers the various aspects of hydroxyapatite (HAp) nanoparticles and their role in different biological situations, and provides the surface and interface contents on (i) hydroxyapatite nanoparticles and their hybridization with organic molecules, (ii) surface designing of hydroxyapatite nanoparticles to provide their biocompatibility and photofunction, and (iii) coating technology of hydroxyapatite nanoparticles. In particular, we summarized how the HAp nanoparticles interact with the different ions and molecules and highlighted the potential for hybridization between HAp nanoparticles and organic molecules, which is driven by the interactions of the HAp nanoparticle surface ions with several functional groups of biological molecules. In addition, we highlighted the studies focusing on the interfacial interactions between the HAp nanoparticles and proteins for exploring the enhanced biocompatibility. Such studies focus on how these interactions affect the hydration layers and protein adsorption. However, the hydration layer state involves diverse molecular interactions that can alter the shape of the adsorbed proteins, thereby affecting cell adhesion and spreading on the surfaces. We also summarized the relationship between the surface properties of the HAp nanoparticles and the hydration layer. Furthermore, we spotlighted the cytocompatible photoluminescent probes that can be developed by designing HAp/organic nanohybrid structures. We then emphasized the importance of photofunctionalization in theranostics, which involves the integration of diagnostics and therapy based on the surface design of the HAp nanoparticles. Furthermore, the coating techniques using HAp nanoparticles and HAp nanoparticle/polymer composites were outlined for fusing base biomaterials with biological tissues. The advantages of HAp/biocompatible polymer composite coatings include the ability to effectively cover porous or irregularly shaped surfaces while controlling the thickness of the coating layer, and the addition of HAp nanoparticles to the polymer matrix improves the mechanical properties, increases the roughness, and forms the morphologies that mimic bone nanostructures. Therefore, the fundamental design of hydroxyapatite nanoparticles and their surfaces was suggested from various aspects for biomedical applications.
Collapse
Affiliation(s)
- Takuya Kataoka
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Zizhen Liu
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Iori Yamada
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Tania Guadalupe Peñaflor Galindo
- Department of General Education, National Institute of Technology, Nagaoka College, 888 Nishikatakai, Nagaoka, Niigata 940-8532, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
2
|
Kawsar M, Sahadat Hossain M, Alam MK, Bahadur NM, Shaikh MAA, Ahmed S. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: a review. J Mater Chem B 2024; 12:3376-3391. [PMID: 38506117 DOI: 10.1039/d3tb02846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The applications of calcium phosphates (hydroxyapatite, tetracalcium phosphate, tricalcium phosphate (alpha and beta), fluorapatite, di-calcium phosphate anhydrous, and amorphous calcium-phosphate) are increasing day by day. Calcium hydroxyapatite, commonly known as hydroxyapatite (HAp), represents a mineral form of calcium apatite. Owing to its close molecular resemblance to the mineral constituents of bones, teeth, and hard tissues, HAp is often employed in the biomedical domain. In addition, it is extensively employed in various sectors such as the remediation of water, air, and soil pollution. The key advantage of HAp lies in its potential to accommodate a wide variety of anionic and cationic substitutions. Nevertheless, HAp and tricalcium phosphate (TCP) syntheses typically involve the use of chemical precursors containing calcium and phosphorus sources and employ diverse techniques, such as solid-state, wet, and thermal methods or a combination of these processes. Researchers are increasingly favoring natural sources such as bio-waste (eggshells, oyster shells, animal bones, fish scales, etc.) as viable options for synthesizing HAp. Interestingly, the synthesis route significantly influences the morphology, size, and crystalline phase of calcium phosphates. In this review paper, we highlight both dry and wet methods, which include six commonly used synthesis methods (i.e. solid-state, mechano-chemical, wet-chemical precipitation, hydrolysis, sol-gel, and hydrothermal methods) coupled with the variation in source materials and their influence in modifying the structural morphology from a bulky state to nanoscale to explore the applications of multifunctional calcium phosphates in different formats.
Collapse
Affiliation(s)
- Md Kawsar
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
| | - Md Kawcher Alam
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Aftab Ali Shaikh
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh.
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| |
Collapse
|
3
|
Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon 2023; 9:e19363. [PMID: 37662765 PMCID: PMC10474476 DOI: 10.1016/j.heliyon.2023.e19363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
The osseous tissue can be classified as a nanocomposite that encompasses a complex interweaving of organic and inorganic matrices. This intricate amalgamation consists of a collagen component and a mineral phase that are intricately arranged to form elaborate and perforated configurations. Hydroxyapatite, whether synthesized artificially or obtained from natural sources, has garnered considerable attention as a composite material in the field of bone tissue engineering due to its striking resemblance to bone in terms of structure and characteristics. Hydroxyapatite (HA) constitutes the predominant ceramic biomaterial for biomedical applications due to its ability to replicate the mineral composition of vertebrate bone. Nonetheless, it is noteworthy that the present biomimetic substance exhibits unfavorable mechanical characteristics, characterized by insufficient tensile and compressive strength, thus rendering it unsuitable for effective employment in the field of bone tissue engineering. Due to its beneficial attributes, hydroxyapatite (HA) is frequently employed in conjunction with various polymers and crosslinkers as composites to enhance mechanical properties and overall efficacy of implantable biomaterials engineered. The restoration of skeletal defects through the use of customized replacements is an effective way to replace damaged or lost bone structures. This method not only restores the bones' original functions but also reinstates their initial aesthetic appearance. The utilization of hydroxyapatite-polymer composites within 3D-printed grafts necessitates meticulous optimization of both mechanical and biological properties, in order to ensure their suitability for employment in medical devices. The utilization of 3D-printing technology represents an innovative approach in the manufacturing of HA-based scaffolds, which offers advantageous prospects for personalized bone regeneration. The expeditious prototyping method, with emphasis on the application of 3D printing, presents a viable approach in the development of bespoke prosthetic implants, grounded on healthcare data sets. 4D printing approach is an evolved form of 3D printing that utilizes programmable materials capable of altering the intended shape of printed structures, contingent upon single or dual stimulating factors. These factors include aspects such as pH level, temperature, humidity, crosslinking degree, and leaching factors.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
4
|
Badhe RV, Chatterjee A, Bijukumar D, Mathew MT. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023; 171:116746. [PMID: 36965655 PMCID: PMC10559728 DOI: 10.1016/j.bone.2023.116746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In tissue engineering, the fate of a particular organ/tissue regeneration and repair mainly depends on three pillars - 3D architecture, cells used, and stimulus provided. 3D cell supportive structure development is one of the crucial pillars necessary for defining organ/tissue geometry and shape. In recent years, the advancements in 3D bio-printing (additive manufacturing) made it possible to develop very precise 3D architectures with the help of industrial software like Computer-Aided Design (CAD). The main requirement for the 3D printing process is the bio-ink, which can act as a source for cell support, proliferation, drug (growth factors, stimulators) delivery, and organ/tissue shape. The selection of the bio-ink depends upon the type of 3D tissue of interest. Printing tissues like bone and cartilage is always challenging because it is difficult to find printable biomaterial that can act as bio-ink and mimic the strength of the natural bone and cartilage tissues. This review describes different biomaterials used to develop bio-inks with different processing variables and cell-seeding densities for bone and cartilage 3D printing applications. The review also discusses the advantages, limitations, and cell bio-ink compatibility in each biomaterial section. The emphasis is given to bio-inks reported for 3D printing cartilage and bone and their applications in orthopedics and orthodontists. The critical/important performance and the architectural morphology requirements of desired bone and cartilage bio-inks were compiled in summary.
Collapse
Affiliation(s)
- Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA; Pharmaceutical Chemistry Department, Marathwada Mitramandal's College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Abhinav Chatterjee
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
5
|
Kolekar TV, Bandgar SS, Yadav HM, Kim DY, Magalad VT. Hemolytic and biological assessment of lithium substituted hydroxyapatite nanoparticles for L929 and Hela cervical cancer cells. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. MATERIALS 2021; 14:ma14092317. [PMID: 33947013 PMCID: PMC8125377 DOI: 10.3390/ma14092317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Hydroxyapatite (HAp) is a bioactive ceramic with great potential for the regeneration of the skeletal system. However, its mechanical properties, especially its brittleness, limit its application. Therefore, in order to increase its ability to transmit stresses, it can be combined with a polymer phase, which increases its strength without eliminating the important aspect of bioactivity. The presented work focuses on obtaining organic-inorganic hydrogel materials based on whey protein isolate (WPI) reinforced with nano-HAp powder. The proportion of the ceramic phase was in the range of 0-15%. Firstly, a physicochemical analysis of the materials was performed using XRD, FT-IR and SEM. The hydrogel composites were subjected to swelling capacity measurements, potentiometric and conductivity analysis, and in vitro tests in four liquids: distilled water, Ringer's fluid, artificial saliva, and simulated body fluid (SBF). The incubation results demonstrated the successful formation of new layers of apatite as a result of the interaction with the fluids. Additionally, the influence of the materials on the metabolic activity according to ISO 10993-5:2009 was evaluated by identifying direct contact cytotoxicity towards L-929 mouse fibroblasts, which served as a reference. Moreover, the stimulation of monocytes by hydrogels via the induction of nuclear factor (NF)-κB was investigated. The WPI/HAp composite hydrogels presented in this study therefore show great potential for use as novel bone substitutes.
Collapse
|
7
|
El-Habashy S, Eltaher H, Gaballah A, Mehanna R, El-Kamel AH. Biomaterial-Based Nanocomposite for Osteogenic Repurposing of Doxycycline. Int J Nanomedicine 2021; 16:1103-1126. [PMID: 33603371 PMCID: PMC7887185 DOI: 10.2147/ijn.s298297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Background Besides its antimicrobial action, doxycycline (DX) has lately been repurposed as a small-molecule drug for osteogenic purposes. However, osteogenic DX application is impeded by its dose-dependent cytotoxicity. Further, high-dose DX impairs cell differentiation and mineralization. Purpose Integrating DX into a biomaterial-based delivery system that can control its release would not only ameliorate its cytotoxic actions but also augment its osteogenic activity. In this work, we managed to engineer novel composite DX–hydroxyapatite–polycaprolactone nanoparticles (DX/HAp/PCL) to modify DX osteogenic potential. Methods Employing a 23-factorial design, we first optimized HApN for surface-area attributes to maximize DX loading. Composite DX/HAp/PCL were then realized using a simple emulsification technique, characterized using various in vitro methods, and evaluated for in vitro osteogenesis. Results The developed HApN exhibited a favorable crystalline structure, Ca:P elemental ratio (1.67), mesoporous nature, and large surface area. DX/HAp/PCL achieved the highest reported entrapment efficiency (94.77%±1.23%) of DX in PCL-based particles. The developed composite system achieved controlled release of the water-soluble DX over 24 days. Moreover, the novel composite nanosystem managed to significantly ameliorate DX cytotoxicity on bone-marrow stem cells, as well as enhance its overall proliferation potential. Alkaline phosphatase and mineralization assays revealed superior osteodifferentiation potential of the composite system. Quantification of gene expression demonstrated that while DX solution was able to drive bone-marrow stem cells down the osteogenic lineage into immature osteoblasts after 10-day culture, the innovative composite system allowed maturation of osteodifferentiated cells. To the best of our knowledge, this is the first work to elaborate the impact of DX on the expression of osteogenic genes: RUNX2, OSP, and BSP. Further, the osteogenicity of a DX-loaded particulate-delivery system has not been previously investigated. Conclusion Our findings indicate that repurposing low-dose DX in complementary biomaterial-based nanosystems can offer a prominent osteogenic candidate for bone-regeneration purposes.
Collapse
Affiliation(s)
- Salma El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hoda Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Radwa Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
8
|
El-Habashy SE, Eltaher HM, Gaballah A, Zaki EI, Mehanna RA, El-Kamel AH. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111599. [PMID: 33321643 DOI: 10.1016/j.msec.2020.111599] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite nanoparticles (HApN) are largely employed as osteogenic inorganic material. Inorganic/polymeric hybrid nanostructures can provide versatile bioactivity for superior osteogenicity, particularly as nanoparticles. Herein, we present hybrid biomaterial-based hydroxyapatite/polycaprolactone nanoparticles (HAp/PCL NPs) realized using simple preparation techniques to augment HApN osteogenicity. Using wet chemical precipitation, we optimized HApN crystalline properties utilizing a 23-factorial design. Optimized HApN exhibited typical Ca/P elemental ratio with high reaction yield. Surface area analysis revealed their mesoporous nature and high surface area. Hybrid HAp/PCL NPs prepared using direct emulsification-solvent evaporation maintained HApN crystallinity with no observed chemical interactions. To the best of our knowledge, we are the first to elaborate the biocompatibility and osteogenicity of nanoparticulate hybrid HAp/PCL. Hybrid HAp/PCL NPs outperformed HApN regarding mesenchymal cell proliferation and osteodifferentiation with reduction of possible cytotoxicity. Unlike HApN, hybrid HAp/PCL NPs presented moderate expression of early osteogenic markers, Runx-2 and osteopontin and significantly elevated expression of the late osteogenic marker, bone sialoprotein after 10-day culture. Our results indicate that hybrid bioactive HAp/PCL NPs could offer a more prominent osteogenic potential than plain HApN for bone regenerative applications as a standalone nanoplatform or as part of complex engineered systems.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eiman I Zaki
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
9
|
Yousef MI, Abd HH, Helmy YM, Kamel MAN. Synergistic effect of curcumin and chitosan nanoparticles on nano-hydroxyapatite-induced reproductive toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9362-9376. [PMID: 33141380 DOI: 10.1007/s11356-020-11395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity/biocompatibility of hydroxyapatite nanoparticles (HAPNPs), a prospective nano-biomaterial, is extensively studied, its interaction on the reproductive system following exposure is less exploited. In the present study, male rats were exposed to HAPNPs (300 mg/kg BW) to determine its possible reproductive toxicity. Also, the protective effects of chitosan (CSNPs, 280 mg/kg BW) and/or curcumin (CurNPs, 15 mg/kg BW) nanoparticles against HAPNPs-induced reproductive toxicity were studied. Animals were orally gavage daily with respective doses for 45 consecutive days. The obtained results indicated that HAPNPs caused a significant decrease in sperm count, sperm motility, testosterone hormone, steroidogenic enzymes (17-ketosteroid reductase and 17β-hydroxysteroid dehydrogenase), and antioxidant enzymes (glutathione peroxidase, glutathione S-transferase, catalase, and superoxide dismutase) in addition to total antioxidant capacity and reduced glutathione. LH and FSH, abnormal sperm, oxidative stress parameters (thiobarbituric acid-reactive substances (TBARS), nitric oxide (NO), and 8-hydroxy-deoxyguanosine (8-OHdG)), p53, TNFα, and interleukin-6 were significantly increased. The DNA damage was also analyzed by assaying 8-OHdG level which is considered as an indicator of genotoxicity and also suppression of the gene expression of mtTFA, induction of UCP2. Similarly, the histopathological evaluation was also changed following exposure to HAPNPs. The antioxidant activity of CSNPs and CurNPs showed mitigating effect against reproductive deterioration induced by HAPNPs throughout improvements in semen characteristics, sex hormones, inflammatory factors, and antioxidant status. The present study concluded that HAPNPs induced reproductive toxicity and it is important to use nano-antioxidants CSNPs and CurNPs as protective agents.
Collapse
Affiliation(s)
- Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby, PO Box 832, Alexandria, 21526, Egypt.
| | - Haitham Hassan Abd
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby, PO Box 832, Alexandria, 21526, Egypt
| | - Yasser Mohamed Helmy
- Scientific Consultant at Pharco Company for Pharmaceutical Products, Alexandria, Egypt
| | - Maher Abdel-Nabi Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
|
11
|
Saleem M, Rasheed S, Yougen C. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:242-266. [PMID: 32489483 PMCID: PMC7241470 DOI: 10.1080/14686996.2020.1748520] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/06/2023]
Abstract
In recent years remarkable efforts have been made to produce artificial bone through tissue engineering techniques. Silk fibroin (SF) and hydroxyapatite (HA) have been used in bone tissue regeneration as biomaterials due to mechanical properties of SF and biocompatibility of HA. There has been growing interest in developing SF/HA composites to reduce bone defects. In this regard, several attempts have been made to study the biocompatibility and osteoconductive properties of this material. This article overviews the recent advance from last few decades in terms of the preparative methods and application of SF/HA in bone regeneration. Its first part is related to SF that presents the most common sources, preparation methods and comparison of SF with other biomaterials. The second part illustrates the importance of HA by providing information about its production and properties. The third part presents comparative studies of SF/HA composites with different concentrations of HA along with methods of preparation of composites and their applications.
Collapse
Affiliation(s)
- Muhammad Saleem
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong, 518060, China
- Department of Optoelectronic Science and Technology, 518060, Shenzhen University, P.R China
- Department of Chemistry, University of Kotli, AzadJammu and Kashmir
| | - Sidra Rasheed
- Department of Chemistry, University of Kotli, AzadJammu and Kashmir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off. Raiwind Road, Lahore, 54000, Pakistan
| | - Chen Yougen
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong, 518060, China
- Department of Optoelectronic Science and Technology, 518060, Shenzhen University, P.R China
- CONTACT Chen Yougen Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong518060, China
| |
Collapse
|
12
|
Yang X, Li Y, Liu X, Zhang R, Feng Q. In Vitro Uptake of Hydroxyapatite Nanoparticles and Their Effect on Osteogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:2036176. [PMID: 30018644 PMCID: PMC6029469 DOI: 10.1155/2018/2036176] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
There have been many applications in biomedical fields based on hydroxyapatite nanoparticles (HA NPs) over the past decades. However, the biocompatibility of HANPs is affected by exposure dose, particle size, and the way of contact with cells. The objective of this study is to investigate the effect of HA NPs with different sizes on osteogenesis using human mesenchymal stem cells (hMSCs). Three different-sized HA NPs (~50, ~100, and ~150 nm, resp.) were synthesized to study the cytotoxicity, cellular uptake, and effect on osteogenic differentiation of hMSCs. The results clearly showed that each size of HA NPs had dose-dependent cytotoxicity on hMSCs. It was found that HA NPs could be uptaken into hMSCs. The osteogenic differentiation of hMSCs was evaluated through alkaline phosphatase (ALP) activity measurement, ALP staining, immunofluorescent staining for osteopontin (OPN), and real-time polymerase chain reaction (RT-PCR) examination. As expected, HA NPs of all sizes could promote the differentiation of hMSCs towards osteoblast lineage. Among the three sizes, smaller-sized HA NPs (~50 and ~100 nm) appeared to be more effective in stimulating osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 2017; 249:321-330. [PMID: 28457501 DOI: 10.1016/j.cis.2017.04.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.
Collapse
|
14
|
Wang K, Wang Y, Zhao X, Li Y, Yang T, Zhang X, Wu X. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:565-571. [DOI: 10.1016/j.msec.2017.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 11/16/2022]
|
15
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Gangu KK, Maddila S, Maddila SN, Jonnalagadda SB. Efficient synthetic route for thio-triazole derivatives catalyzed by iron doped fluorapatite. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2730-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Wadhwani PM, Panchal VK, Shah NK. Investigation of anti-corrosive properties of o-anisidine-N-salicylidene and its nanocomposite o-anisidine-N-salicylidene/NiONPs on mild steel in 2 N HCl. RSC Adv 2016. [DOI: 10.1039/c6ra13630c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This paper describes the inhibition of mild steel corrosion in 2 N HCl aqueous solution by o-anisidine-N-salicylidene (o-AnNS) and o-AnNS assembled on nickel oxide nanoparticles (NiONPs), which was investigated using various techniques.
Collapse
Affiliation(s)
| | | | - N. K. Shah
- Department of Chemistry
- School of Sciences
- Gujarat University
- Ahmedabad-380009
- India
| |
Collapse
|
19
|
Nathanael AJ, Hong SI, Oh TH, Seo YH, Singh D, Han SS. Enhanced cell viability of hydroxyapatite nanowires by surfactant mediated synthesis and its growth mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra01155a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite (HA) nanowires were synthesized using cetyl-trimethyl-ammonium-bromide (CTAB) as a surfactant and exhibited enhanced cell viability over other HA nanostructures.
Collapse
Affiliation(s)
- A. Joseph Nathanael
- Department of Nano, Medical and Polymer Materials
- Yeungnam University
- Gyeongsan
- South Korea
- Nanomaterials Research Institute
| | - Sun Ig Hong
- Department of Nanomaterials Engineering
- Chungnam National University
- Daejeon
- South Korea
| | - Tae Hwan Oh
- Department of Nano, Medical and Polymer Materials
- Yeungnam University
- Gyeongsan
- South Korea
| | - Young Ho Seo
- Department of Nano, Medical and Polymer Materials
- Yeungnam University
- Gyeongsan
- South Korea
| | - Deepti Singh
- Department of Nano, Medical and Polymer Materials
- Yeungnam University
- Gyeongsan
- South Korea
| | - Sung Soo Han
- Department of Nano, Medical and Polymer Materials
- Yeungnam University
- Gyeongsan
- South Korea
| |
Collapse
|
20
|
Tunkara E, Dag Ö. Salt‐Acid‐Surfactant Lyotropic Liquid Crystalline Mesophases: Synthesis of Highly Transparent Mesoporous Calcium Hydroxyapatite Thin Films. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ebrima Tunkara
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey, http://www.fen.bilkent.edu.tr/~dag/
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey, http://www.fen.bilkent.edu.tr/~dag/
| |
Collapse
|
21
|
Cao B, Yang M, Wang L, Xu H, Zhu Y, Mao C. "Cleaning" the Surface of Hydroxyapatite Nanorods by a Reaction-Dissolution Approach. J Mater Chem B 2015; 3:7667-7672. [PMID: 26693012 PMCID: PMC4675168 DOI: 10.1039/c5tb01509j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synthetic nanoparticles are always terminated with coating molecules, which are often cytotoxic and not desired in biomedicine. Here we propose a novel reaction-dissolution approach to remove the cytotoxic coating molecules. A two-component solution is added to the nanoparticle solution; one component reacts with the coating molecules to form a salt whereas another is a solvent for dissolving and thus removing the salt. As a proof of concept, this work uses a NaOH-ethanol solution to remove the cytotoxic linoleic acid molecules coated on the hydroxyapatite nanorods (HAP-NRs). The removal of the coating molecules not only significantly improves the biocompatibility of HAP-NRs but also enables their oriented attachment into tightly-bound superstructures, which mimic the organized HAP crystals in bone and enamel and can promote the osteogenic differentiation of mesenchymal stem cells. Our reaction-dissolution approach can be extended to the surface "cleaning" of other nanomaterials.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251 USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Lin Wang
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251 USA
| | - Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251 USA
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251 USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251 USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
22
|
Fabrication of inorganic hydroxyapatite nanoparticles and organic biomolecules-dual encapsulated alginate microspheres. Biointerphases 2015; 10:021005. [DOI: 10.1116/1.4919561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Ibrahim AR, Li X, Zhou Y, Huang Y, Chen W, Wang H, Li J. Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2. Int J Mol Sci 2015; 16:7960-75. [PMID: 25860950 PMCID: PMC4425061 DOI: 10.3390/ijms16047960] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022] Open
Abstract
The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g) and surface area (284.1 m2/g) was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions) leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug) loading (1.38 g/g HAp), enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide.
Collapse
Affiliation(s)
- Abdul-Rauf Ibrahim
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| | - Xiangyun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| | - Yulan Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| | - Yan Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| | - Wenwen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| | - Hongtao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
24
|
Wang S, Guo Z. Rhombohedral Hydroxyapatite with Mesoporous Architecture for pH-Responsive Drug Delivery. CHEM LETT 2015. [DOI: 10.1246/cl.140998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sha Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
| |
Collapse
|
25
|
Gnedenkov S, Sinebryukhov S, Zavidnaya A, Egorkin V, Puz’ A, Mashtalyar D, Sergienko V, Yerokhin A, Matthews A. Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Huang YT, Yamauchi Y, Lai CW, Chen WJ. Evaluating the antibacterial property of gold-coated hydroxyapatite: a molecular biological approach. JOURNAL OF HAZARDOUS MATERIALS 2014; 277:20-26. [PMID: 24268536 DOI: 10.1016/j.jhazmat.2013.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are one of the widely used biocompatible materials. However, information about the reaction between HAP NPs and microorganisms is insufficient. This paper aims to understand the antibacterial property of a new nanocomposite consisting of gold-coated HAP and alginate polymer (namely, Au-HAP@Alg NPs). To the best of our knowledge, we reported the first information regarding to MIC (25mg/mL), DIZ (no visible zone), and IC50 (0.5mg/mL) of Au-HAP@Alg NPs toward the microorganism Escherichia coli TOP10. The real-time gene expression levels of polA, polB, cyd, mdoG, GAPDH, and 16S rRNA were maintained at stable levels up until conditions of 2.5mg/mL Au-HAP@Alg NPs. The results showed that 16S rRNA can be a good reference under these conditions. The expressions of GAPDH, cyd, and mdoG were inhibited obviously under condition of 10mg/mL of Au-HAP@Alg NPs. Our results indicated that the possible antibacterial mechanism of Au-HAP@Alg was through the interaction with these carbohydrate and cell wall-related genes. This novel biocompatible and antibacterial material can potentially be applied in medical and environmental fields.
Collapse
Affiliation(s)
- Yu-Tzu Huang
- Department of Bioenvironmental Engineering and Research Center for Analysis and Identification, Chung Yuan Christian University, No. 200, Chung-Pei Road, Jhong-Li 32023, Taiwan; Center for Biomedical Technology (CBT), Chung Yuan Christian University, No. 200, Chung-Pei Road, Jhong-Li 32023, Taiwan.
| | - Yusuke Yamauchi
- World Premier International Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Chung-Wei Lai
- Department of Bioenvironmental Engineering and Research Center for Analysis and Identification, Chung Yuan Christian University, No. 200, Chung-Pei Road, Jhong-Li 32023, Taiwan
| | - Wei-Jung Chen
- Department of Bioenvironmental Engineering and Research Center for Analysis and Identification, Chung Yuan Christian University, No. 200, Chung-Pei Road, Jhong-Li 32023, Taiwan
| |
Collapse
|
27
|
Zeng F, Wang J, Wu Y, Yu Y, Tang W, Yin M, Liu C. Preparation of pore expanded mesoporous hydroxyapatite via auxiliary solubilizing template method. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Bharath G, Jagadeesh Kumar A, Karthick K, Mangalaraj D, Viswanathan C, Ponpandian N. Shape evolution and size controlled synthesis of mesoporous hydroxyapatite nanostructures and their morphology dependent Pb(ii) removal from waste water. RSC Adv 2014. [DOI: 10.1039/c4ra06929c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanostructured hydroxyapatite with tunable morphologies was prepared by suitably adjusting the surfactants and used as an adsorbent for Pb(ii) from wastewater.
Collapse
Affiliation(s)
- G. Bharath
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| | - A. Jagadeesh Kumar
- Department of Environmental Sciences
- Bharathiar University
- Coimbatore 641 046, India
| | - K. Karthick
- Department of Environmental Sciences
- Bharathiar University
- Coimbatore 641 046, India
| | - D. Mangalaraj
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| | - C. Viswanathan
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| | - N. Ponpandian
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore 641 046, India
| |
Collapse
|
29
|
Lee SU, Min KH, Jeong SY, Bae H, Lee SC. Calcium phosphate-reinforced photosensitizer-loaded polymer nanoparticles for photodynamic therapy. Chem Asian J 2013; 8:3222-9. [PMID: 24038917 DOI: 10.1002/asia.201300840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/03/2013] [Indexed: 11/06/2022]
Abstract
Calcium phosphate-reinforced photosensitizer-loaded polymer nanoparticles have been developed for photodynamic therapy. Chlorin e6 (Ce6)-loaded core-shell-corona polymer micelles of poly(ethylene glycol)-b-poly(L-aspartic acid)-b-poly(L-phenylalanine) (PEG-PAsp-PPhe) were employed as template nanoparticles for mineralization with calcium phosphate (CaP). CaP deposition was performed by the electrostatic localization of calcium ions at the anionic PAsp middle shells and the subsequent addition of phosphate anions. CaP-reinforced nanoparticles exhibited enhanced stability. The CaP mineral layer effectively inhibited Ce6 release from the Ce6-loaded mineralized nanoparticles (Ce6-NP-CaP) at physiological pH value. At an acidic endosomal pH value of 5.0, Ce6 release was enhanced, owing to rapid dissolution of the CaP minerals. Upon irradiation of Ce6-NP-CaP-treated MCF-7 breast-tumor cells, the cell viability dramatically decreased with increasing irradiation time. The phototoxicity of Ce6-NP-CaP was much higher than that of free Ce6. Non-invasive optical-imaging results indicated that Ce6-NP-CaP exhibited enhanced tumor specificity compared with free Ce6 and Ce6-loaded non-mineralized polymer nanoparticles (Ce6-NP).
Collapse
Affiliation(s)
- Sang-Uk Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701 (Republic of Korea)
| | | | | | | | | |
Collapse
|
30
|
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 2013; 9:7591-621. [PMID: 23583646 DOI: 10.1016/j.actbio.2013.04.012] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Hydroxyapatite (HAp) is the major mineral constituent of vertebrate bones and teeth. It has been well documented that HAp nanoparticles can significantly increase the biocompatibility and bioactivity of man-made biomaterials. Over the past decade, HAp nanoparticles have therefore increasingly been in demand, and extensive efforts have been devoted to develop many synthetic routes, involving both scientifically and economically new features. Several investigations have also been made to determine how critical properties of HAp can be effectively controlled by varying the processing parameters. With such a wide variety of methods for the preparation of HAp nanoparticles, choosing a specific procedure to synthesize a well-defined powder can be laborious; accordingly, in the present review, we have summarized all the available information on the preparation methodologies of HAp, and highlighted the inherent advantages and disadvantages involved in each method. This article is focused on nanosized HAp, although recent articles on microsized particles, especially those assembled from nanoparticles and/or nanocrystals, have also been reviewed for comparison. We have also provided several scientific figures and discussed a number of critical issues and challenges which require further research and development.
Collapse
|
31
|
Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 2013; 1:2447-2450. [DOI: 10.1039/c3tb20365d] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Bastakoti BP, Inuoe M, Yusa SI, Liao SH, Wu KCW, Nakashima K, Yamauchi Y. A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility. Chem Commun (Camb) 2012; 48:6532-4. [DOI: 10.1039/c2cc32279j] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|