1
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
2
|
Martín Giménez VM, Arya G, Zucchi IA, Galante MJ, Manucha W. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery. SOFT MATTER 2021; 17:8577-8584. [PMID: 34580698 DOI: 10.1039/d1sm00999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional drug delivery systems often have several pharmacodynamic and pharmacokinetic limitations related to their low efficacy and bad safety. It is because these traditional systems cannot always be selectively addressed to their therapeutic target sites. Currently, target-specific and controlled drug delivery is one of the foremost challenges in the biomedical field. In this context, stimuli-responsive polymeric nanomaterials have been recognized as a topic of intense research. They have gained immense attention in therapeutics - particularly in the drug delivery area - due to the ease of tailorable behavior in response to the surroundings. Light irradiation is of particular interest among externally triggered stimuli because it may be specifically localized in a contact-free manner. Light-human body interactions may sometimes be harmful due to photothermal and photomechanical reactions that lead to cell death by photo-toxicity and/or photosensitization. However, these limitations may also be overcome by the use of photo-responsive polymeric nanostructures. This review summarizes recent developments in photo-responsive polymeric nanocarriers used in the field of drug delivery systems, including nanoparticles, nanogels, micelles, nanofibers, dendrimers, and polymersomes, as well as their classification and mechanisms of drug release.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Geeta Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, India
| | - Ileana A Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina
| | - María J Galante
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| |
Collapse
|
3
|
Ulrich S, Wang X, Rottmar M, Rossi RM, Nelson BJ, Bruns N, Müller R, Maniura-Weber K, Qin XH, Boesel LF. Nano-3D-Printed Photochromic Micro-Objects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101337. [PMID: 34028975 DOI: 10.1002/smll.202101337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Molecular photoswitches that can reversibly change color upon irradiation are promising materials for applications in molecular actuation and photoresponsive materials. However, the fabrication of photochromic devices is limited to conventional approaches such as mold casting and spin-coating, which cannot fabricate complex structures. Reported here is the first photoresist for direct laser writing of photochromic 3D micro-objects via two-photon polymerization. The integration of photochromism into thiol-ene photo-clickable resins enables rapid two-photon laser processing of highly complex microstructures and facile postmodification using a series of donor-acceptor Stenhouse adduct (DASA) photoswitches with different excitation wavelengths. The versatility of thiol-ene photo-click reactions allows fine-tuning of the network structure and physical properties as well as the type and concentration of DASA. When exposed to visible light, these microstructures exhibit excellent photoresponsiveness and undergo reversible color-changing via photoisomerization. It is demonstrated that the fluorescence variations of DASAs can be used as a reporter of photoswitching and thermal recovery, allowing the reading of DASA-containing sub-micrometric structures in 3D. This work delivers a new approach for custom microfabrication of 3D photochromic objects with molecularly engineered color and responsiveness.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - René Michel Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Cathedral Street 295, Glasgow, G1 1XL, UK
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland
| | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Xiao-Hua Qin
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland
| | - Luciano Fernandes Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
4
|
Chemical and surface engineered superhydrophobic patterned membrane with enhanced wetting and fouling resistance for improved membrane distillation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Chen Y, Chen N, Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int J Pharm 2021; 592:120081. [PMID: 33189810 DOI: 10.1016/j.ijpharm.2020.120081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The concept of skin-specific drug delivery with a spatio-temporal control has just recently received concerns in dermatology. Inspired by the progress in smart materials and their perspective application in medicine science, development of stimuli responsive drug delivery systems with skin-specificity has become possible, which has led to a new era in the localized treatment of skin diseases. This review highlights both the internal and external stimuli that have been employed in this field, with a focus on their implication on the rational design of pharmaceutical formulations, especially those nanoscale drug carriers that are able to provide release of payloads with a precise spatio-temporal control in response to specific stimuli. Also, the strategy of dual stimuli responsive drug delivery systems will be discussed for further improvement of the efficacy of skin drug delivery. The prominent examples of the established approaches are described as comprehensive and current as possible. The review is expected to provide some inspiration for utilizing different stimuli for realizing the site-specific and on-demand drug delivery to the skin.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China
| |
Collapse
|
6
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
7
|
Apebende EA, Dubois L, Bruns N. Light-responsive block copolymers with a spiropyran located at the block junction. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Ramanan SN, Shahkaramipour N, Tran T, Zhu L, Venna SR, Lim CK, Singh A, Prasad PN, Lin H. Self-cleaning membranes for water purification by co-deposition of photo-mobile 4,4′-azodianiline and bio-adhesive polydopamine. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Perrotta A, Werzer O, Coclite AM. Strategies for Drug Encapsulation and Controlled Delivery Based on Vapor‐Phase Deposited Thin Films. ADVANCED ENGINEERING MATERIALS 2018; 20. [DOI: 10.1002/adem.201700639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Vapor‐phase deposition methods allow the synthesis and engineering of organic and inorganic thin films, with high control on the chemical composition, physical properties, and conformality. In this review, the recent applications of vapor‐phase deposition methods such as initiated chemical vapor deposition (iCVD), plasma enhanced chemical vapor deposition (PE‐CVD), and atomic layer deposition (ALD), for the encapsulation of active pharmaceutical drugs are reported. The strategies and emergent routes for the application of vapor‐deposited thin films on the drug controlled release and for the engineering of advanced release nanostructured devices are presented.
Collapse
Affiliation(s)
- Alberto Perrotta
- Institute of Solid State Physics NAWI Graz Graz University of Technology 8010 Graz Austria
| | - Oliver Werzer
- Institute of Pharmaceutical Science NAWI Graz Department of Pharmaceutical Technology University of Graz 8010 Graz Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics NAWI Graz Graz University of Technology 8010 Graz Austria
| |
Collapse
|
10
|
Ulrich S, Hemmer JR, Page ZA, Dolinski ND, Rifaie-Graham O, Bruns N, Hawker CJ, Boesel LF, Read de Alaniz J. Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Lett 2017; 6:738-742. [PMID: 35650854 DOI: 10.1021/acsmacrolett.7b00350] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular synthesis of Donor-Acceptor Stenhouse Adduct (DASA) polymer conjugates is described. Pentafluorophenyl-ester chemistry is employed to incorporate aromatic amines into acrylate and methacrylate copolymers, which are subsequently coupled with activated furans to generate polymers bearing a range of DASA units in a modular manner. The effect of polymer glass transition temperature on switching kinetics is studied, showing dramatic rate enhancements in going from a glassy to a rubbery matrix. Moreover, tuning the DASA absorption profile allows for selective switching, as demonstrated by ternary photopatterning, with potential applications in rewriteable data storage.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | | | | | - Omar Rifaie-Graham
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nico Bruns
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Luciano F. Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | |
Collapse
|
11
|
Manouras T, Vamvakaki M. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym Chem 2017. [DOI: 10.1039/c6py01455k] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in field-responsive polymers, which have emerged as highly promising materials for numerous applications, are highlighted.
Collapse
Affiliation(s)
- Theodore Manouras
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology-Hellas
- Heraklion
- Greece
- University of Crete
| |
Collapse
|
12
|
Schöller K, Toncelli C, Experton J, Widmer S, Rentsch D, Vetushka A, Martin CJ, Heuberger M, Housecroft CE, Constable EC, Boesel LF, Scherer LJ. 2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes. RSC Adv 2016. [DOI: 10.1039/c6ra23677d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amphiphilic polymer co-networks were functionalized with spyropiran and terpyridine yielding multi-responsive membranes with switchable properties and potential applications in drug delivery and medical sensors.
Collapse
Affiliation(s)
- Katrin Schöller
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| | - Claudio Toncelli
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| | - Juliette Experton
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| | - Susanne Widmer
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| | - Daniel Rentsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 8600 Dübendorf
- Switzerland
| | - Aliaksei Vetushka
- Laboratory of Nanostructures and Nanomaterials
- Institute of Physics AS CR
- 162 00 Prague 6
- Czech Republic
| | - Colin J. Martin
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Manfred Heuberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| | | | | | - Luciano F. Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| | - Lukas J. Scherer
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| |
Collapse
|