1
|
Bazmi S, Seifi B, Wallin S. Simulations of a protein fold switch reveal crowding-induced population shifts driven by disordered regions. Commun Chem 2023; 6:191. [PMID: 37689829 PMCID: PMC10492864 DOI: 10.1038/s42004-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Macromolecular crowding effects on globular proteins, which usually adopt a single stable fold, have been widely studied. However, little is known about crowding effects on fold-switching proteins, which reversibly switch between distinct folds. Here we study the mutationally driven switch between the folds of GA and GB, the two 56-amino acid binding domains of protein G, using a structure-based dual-basin model. We show that, in the absence of crowders, the fold populations PA and PB can be controlled by the strengths of contacts in the two folds, κA and κB. A population balance, PA ≈ PB, is obtained for κB/κA = 0.92. The resulting model protein is subject to crowding at different packing fractions, ϕc. We find that crowding increases the GB population and reduces the GA population, reaching PB/PA ≈ 4 at ϕc = 0.44. We analyze the ϕc-dependence of the crowding-induced GA-to-GB switch using scaled particle theory, which provides a qualitative, but not quantitative, fit of our data, suggesting effects beyond a spherical description of the folds. We show that the terminal regions of the protein chain, which are intrinsically disordered only in GA, play a dominant role in the response of the fold switch to crowding effects.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
2
|
Bazmi S, Wallin S. Crowding-induced protein destabilization in the absence of soft attractions. Biophys J 2022; 121:2503-2513. [PMID: 35672949 DOI: 10.1016/j.bpj.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
It is generally assumed that volume exclusion by macromolecular crowders universally stabilizes the native states of proteins and destabilization suggests soft attractions between crowders and protein. Here we show that proteins can be destabilized even by crowders that are purely repulsive. With a coarse-grained sequence-based model, we study the folding thermodynamics of two sequences with different native folds, a helical hairpin and a β-barrel, in a range of crowder volume fractions, φc. We find that the native state, N, remains structurally unchanged under crowded conditions, while the size of the unfolded state, U, decreases monotonically with φc. Hence, for all φc>0, U is entropically disfavored relative to N. This entropy-centric view holds for the helical hairpin protein, which is stabilized under all crowded conditions as quantified by changes in either the folding midpoint temperature, Tm, or the free energy of folding. We find, however, that the β-barrel protein is destabilized under low-T, low-φc conditions. This destabilization can be understood from two characteristics of its folding: 1) a relatively compact U at T<Tm, such that U is only weakly disfavored entropically by the crowders; and 2) a transient, compact, and relatively low-energy nonnative state that has a maximum population of only a few percent at φc=0, but increasing monotonically with φc. Overall, protein destabilization driven by hard-core effects appears possible when a compaction of U leads to even a modest population of compact nonnative states that are energetically competitive with N.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland and Labrador, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland and Labrador, Canada.
| |
Collapse
|
3
|
Seifi B, Wallin S. The C-terminal domain of transcription factor RfaH: Folding, fold switching and energy landscape. Biopolymers 2021; 112:e23420. [PMID: 33521926 DOI: 10.1002/bip.23420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
We simulate the folding and fold switching of the C-terminal domain (CTD) of the transcription factor RfaH using an all-atom physics-based model augmented with a dual-basin structure-based potential energy term. We show that this hybrid model captures the essential thermodynamic behavior of this metamorphic domain, that is, a change in the global free energy minimum from an α-helical hairpin to a 5-stranded β-barrel upon the dissociation of the CTD from the rest of the protein. Using Monte Carlo sampling techniques, we then analyze the energy landscape of the CTD in terms of progress variables for folding toward the two folds. We find that, below the folding transition, the energy landscape is characterized by a single, dominant funnel to the native β-barrel structure. The absence of a deep funnel to the α-helical hairpin state reflects a negligible population of this fold for the isolated CTD. We observe, however, a higher α-helix structure content in the unfolded state compared to results from a similar but fold switch-incompetent version of our model. Moreover, in folding simulations started from an extended chain conformation we find transiently formed α-helical structure, occurring early in the process and disappearing as the chain progresses toward the thermally stable β-barrel state.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Canada
| |
Collapse
|
4
|
Trotter D, Wallin S. Effects of Topology and Sequence in Protein Folding Linked via Conformational Fluctuations. Biophys J 2020; 118:1370-1380. [PMID: 32061276 DOI: 10.1016/j.bpj.2020.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
Experiments have compared the folding of proteins with different amino acid sequences but the same basic structure, or fold. Results indicate that folding is robust to sequence variations for proteins with some nonlocal folds, such as all-β, whereas the folding of more local, all-α proteins typically exhibits a stronger sequence dependence. Here, we use a coarse-grained model to systematically study how variations in sequence perturb the folding energy landscapes of three model sequences with 3α, 4β + α, and β-barrel folds, respectively. These three proteins exhibit folding features in line with experiments, including expected rank order in the cooperativity of the folding transition and stability-dependent shifts in the location of the free-energy barrier to folding. Using a generalized-ensemble simulation approach, we determine the thermodynamics of around 2000 sequence variants representing all possible hydrophobic or polar single- and double-point mutations. From an analysis of the subset of stability-neutral mutations, we find that folding is perturbed in a topology-dependent manner, with the β-barrel protein being the most robust. Our analysis shows, in particular, that the magnitude of mutational perturbations of the transition state is controlled in part by the size or "width" of the underlying conformational ensemble. This result suggests that the mutational robustness of the folding of the β-barrel protein is underpinned by its conformationally restricted transition state ensemble, revealing a link between sequence and topological effects in protein folding.
Collapse
Affiliation(s)
- Daniel Trotter
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
5
|
Aina A, Wallin S. Multisequence algorithm for coarse-grained biomolecular simulations: Exploring the sequence-structure relationship of proteins. J Chem Phys 2017; 147:095102. [DOI: 10.1063/1.4986933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- A. Aina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| | - S. Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
6
|
Li M, Sun T, Jin F, Yu D, Liu Z. Dimension conversion and scaling of disordered protein chains. MOLECULAR BIOSYSTEMS 2017; 12:2932-40. [PMID: 27440558 DOI: 10.1039/c6mb00415f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To extract protein dimension and energetics information from single-molecule fluorescence resonance energy transfer spectroscopy (smFRET) data, it is essential to establish the relationship between the distributions of the radius of gyration (Rg) and the end-to-end (donor-to-acceptor) distance (Ree). Here, we performed a coarse-grained molecular dynamics simulation to obtain a conformational ensemble of denatured proteins and intrinsically disordered proteins. For any disordered chain with fixed length, there is an excellent linear correlation between the average values of Rg and Ree under various solvent conditions, but the relationship deviates from the prediction of a Gaussian chain. A modified conversion formula was proposed to analyze smFRET data. The formula reduces the discrepancy between the results obtained from FRET and small-angle X-ray scattering (SAXS). The scaling law in a coil-globule transition process was examined where a significant finite-size effect was revealed, i.e., the scaling exponent may exceed the theoretical critical boundary [1/3, 3/5] and the prefactor changes notably during the transition. The Sanchez chain model was also tested and it was shown that the mean-field approximation works well for expanded chains.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Tanlin Sun
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Fan Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing 100871, China. and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Krobath H, Chen T, Chan HS. Volumetric Physics of Polypeptide Coil–Helix Transitions. Biochemistry 2016; 55:6269-6281. [DOI: 10.1021/acs.biochem.6b00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich Krobath
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Chen
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|